Skip to main content

Automatic Baggage Threat Detection Using Deep Attention Networks

  • Conference paper
  • First Online:
Artificial Intelligence Research (SACAIR 2021)

Abstract

Detecting threats in densely packed luggage is challenging for aviation security due to the partial occlusion or self-occlusion of prohibited items. Computer-aided systems have assisted security personnel to an extent. However, they require in the loop manipulation of X-ray baggage images to improve visibility of concealed prohibited items. Researchers have proposed several methods to detect threats automatically, but the occlusion problem is still prevalent. This paper proposes a novel attention mechanism that leverages spatial and channel-wise information of a given intermediate feature map. The mechanism can be seamlessly placed into existing Deep Convolutional Neural Network (DCNN) architectures. It sequentially infers the channel and spatial attention that recalibrates feature responses of the network by highlighting visual cues and dulling cues that do not contribute to the semantics of an image. In our experimentation, the proposed attention mechanism is implemented into Faster Region-based Convolutional Neural Network (Faster-RCNN) and thoroughly validated on publicly available datasets such as OPXray, SIXray and HIXray. It outperforms prior methods on the OPIXray, achieving a mean average precision (mAP) of 91.20%. For completeness, we also validate the proposed approach on ImageNet and MS-COCO datasets; it achieves an accuracy of 77.12 top-1 and 93.46 top-5 on ImageNet; and 39.7 mAP on MS-COCO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: GANomaly: semi-supervised anomaly detection via adversarial training. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 622–637. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_39

    Chapter  Google Scholar 

  2. Akcay, S., Breckon, T.P.: An evaluation of region based object detection strategies within X-ray baggage security imagery. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 1337–1341. IEEE, Beijing, September 2017. https://doi.org/10.1109/ICIP.2017.8296499

  3. Akcay, S., Kundegorski, M.E., Willcocks, C.G., Breckon, T.P.: Using deep convolutional neural network architectures for object classification and detection within X-ray baggage security imagery. IEEE Trans. Inform. Forensic Secur. 13(9), 2203–2215 (2018). https://doi.org/10.1109/TIFS.2018.2812196

    Article  Google Scholar 

  4. Bastan, M., Byeon, W., Breuel, T.: Object recognition in multi-view dual energy X-ray images. In: Proceedings of the British Machine Vision Conference 2013, pp. 130.1–130.11. British Machine Vision Association, Bristol (2013). https://doi.org/10.5244/C.27.130

  5. Chen, K., Wang, J.: MMDetection: open MMLab detection toolbox and benchmark. arXiv:1906.07155 [cs, eess], June 2019

  6. Dai, J., et al.: Deformable convolutional networks. arXiv:1703.06211 [cs], June 2017

  7. Jain, D.K.: An evaluation of deep learning based object detection strategies for threat object detection in baggage security imagery. Pattern Recognit. Lett. 120, 112–119 (2019). https://doi.org/10.1016/j.patrec.2019.01.014

  8. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010). https://doi.org/10.1007/s11263-009-0275-4

    Article  Google Scholar 

  9. Griffin, L.D., Caldwell, M., Andrews, J.T.A., Bohler, H.: “Unexpected item in the bagging area’’: anomaly detection in X-ray security images. IEEE Trans. Inf. Forensics Secur. 14(6), 1539–1553 (2019). https://doi.org/10.1109/TIFS.2018.2881700

    Article  Google Scholar 

  10. Hassan, T., Akçay, S., Bennamoun, M., Khan, S., Werghi, N.: Cascaded structure tensor framework for robust identification of heavily occluded baggage items from multi-vendor X-ray scans, p. 16

    Google Scholar 

  11. Hassan, T., Akçay, S., Bennamoun, M., Khan, S., Werghi, N.: Tensor pooling-driven instance segmentation framework for baggage threat recognition. Neural Comput. Appl., 1–12 (2021). https://doi.org/10.1007/s00521-021-06411-x

  12. Hassan, T., et al.: Meta-transfer learning driven tensor-shot detector for the autonomous localization and recognition of concealed baggage threats. Sensors 20(22), 6450 (2020). https://doi.org/10.3390/s20226450

    Article  Google Scholar 

  13. Hassan, T., Werghi, N.: Trainable structure tensors for autonomous baggage threat detection under extreme occlusion. In: Ishikawa, H., Liu, C.-L., Pajdla, T., Shi, J. (eds.) ACCV 2020. LNCS, vol. 12627, pp. 257–273. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69544-6_16

    Chapter  Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE, Las Vegas, June 2016. https://doi.org/10.1109/CVPR.2016.90

  15. Hu, B., Zhang, C., Wang, L., Zhang, Q., Liu, Y.: Multi-label X-Ray imagery classification via bottom-up attention and meta fusion. In: Ishikawa, H., Liu, C.-L., Pajdla, T., Shi, J. (eds.) ACCV 2020. LNCS, vol. 12627, pp. 173–190. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69544-6_11

    Chapter  Google Scholar 

  16. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018). https://doi.org/10.1109/CVPR.2018.00745

  17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc. (2012)

    Google Scholar 

  18. Kundegorski, M., Akcay, S., Devereux, M., Mouton, A., Breckon, T.: On using feature descriptors as visual words for object detection within X-ray baggage security screening. In: 7th International Conference on Imaging for Crime Detection and Prevention (ICDP 2016), p. 12(6.). Institution of Engineering and Technology, Madrid (2016). https://doi.org/10.1049/ic.2016.0080

  19. Lin, T.Y., et al.: Microsoft COCO: common objects in context. arXiv:1405.0312 [cs], February 2015

  20. Mery, D., Svec, E., Arias, M., Riffo, V., Saavedra, J.M., Banerjee, S.: Modern computer vision techniques for X-Ray testing in baggage inspection. IEEE Trans. Syst. Man Cybernet. Syst. 47(4), 682–692 (2017). https://doi.org/10.1109/TSMC.2016.2628381

    Article  Google Scholar 

  21. Miao, C., et al.: SIXray: a large-scale security inspection X-Ray benchmark for prohibited item discovery in overlapping images. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2114–2123. IEEE, Long Beach, June 2019. https://doi.org/10.1109/CVPR.2019.00222

  22. Qin, Z., Zhang, P., Wu, F., Li, X.: FcaNet: frequency channel attention networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 783–792, October 2021

    Google Scholar 

  23. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. arXiv:1506.01497 [cs], January 2016

  24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. arXiv:1505.04597 [cs], May 2015

  25. Szegedy, C., et al.: Going deeper with convolutions. arXiv:1409.4842 [cs], September 2014

  26. Tao, R., et al.: Towards real-world X-ray security inspection: a high-quality benchmark and lateral inhibition module for prohibited items detection. arXiv:2108.09917 [cs], August 2021

  27. Tao, R., et al.: Over-sampling de-occlusion attention network for prohibited items detection in noisy X-ray images. arXiv:2103.00809 [cs], March 2021

  28. Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: ECA-Net: efficient channel attention for deep convolutional neural networks. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11531–11539. IEEE, Seattle, June 2020. https://doi.org/10.1109/CVPR42600.2020.01155

  29. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7794–7803. IEEE, Salt Lake City, June 2018. https://doi.org/10.1109/CVPR.2018.00813

  30. Wei, Y., Tao, R., Wu, Z., Ma, Y., Zhang, L., Liu, X.: Occluded prohibited items detection: an X-ray security inspection benchmark and de-occlusion attention module. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 138–146. ACM, Seattle, October 2020. https://doi.org/10.1145/3394171.3413828

  31. Wei, Y., Liu, X.: Dangerous goods detection based on transfer learning in X-ray images. Neural Comput. Appl. 32(12), 8711–8724 (2019). https://doi.org/10.1007/s00521-019-04360-0

    Article  Google Scholar 

  32. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. arXiv:1807.06521 [cs], July 2018

  33. Xu, C., Han, N., Li, H.: A dangerous goods detection approach based on YOLOv3. In: Proceedings of the 2018 2nd International Conference on Computer Science and Artificial Intelligence - CSAI 2018, pp. 600–603. ACM Press, Shenzhen (2018). https://doi.org/10.1145/3297156.3297199

  34. Yu, C.: The role of human factors in airport baggage screening. Undergraduate Res. J. 9, 146–155 (2018)

    Google Scholar 

Download references

Acknowledgement

This research is funded and supported by the National Research Foundation (NRF), University of KwaZulu-Natal (UKZN) and the Center for High Performance Computing (CHPC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serestina Viriri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rampershad, Y., Viriri, S., Gwetu, M. (2022). Automatic Baggage Threat Detection Using Deep Attention Networks. In: Jembere, E., Gerber, A.J., Viriri, S., Pillay, A. (eds) Artificial Intelligence Research. SACAIR 2021. Communications in Computer and Information Science, vol 1551. Springer, Cham. https://doi.org/10.1007/978-3-030-95070-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95070-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95069-9

  • Online ISBN: 978-3-030-95070-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics