Abstract
In order to provide benefits in the areas of fully homomorphic encryption (FHE), multi-party computation (MPC), post-quantum signature schemes, or efficient masked implementations for side-channel resistance, reducing the number of multiplications has become a quite popular trend for the symmetric cryptographic primitive designs. With an aggressive design strategy exploiting the extremely simple and low-degree S-box and low number of rounds, Pyjamask, the fundamental block cipher of the AEAD with the same name, has the smallest number of AND gates per bit among all the existing block ciphers (except LowMC or Rasta which work on unconventional plaintext/key sizes). Thus, although the AEAD Pyjamask stuck at the second round of the NIST lightweight cryptography standardization process, the block cipher Pyjamask itself still attracts a lot of attention. Not very unexpectedly, the low degree and the low number of rounds are the biggest weakness of Pyjamask. At FSE 2020, Dobraunig et al. successfully mounted an algebraic and higher-order differential attack on full Pyjamask-96, one member of the Pyjamask block cipher family. However, the drawback of this attack is that it has to use the full codebook, which makes the attack less appealing. In this paper, we take integral attacks as our weapon, which are also sensitive to the low degree. Based on a new 11-round integral distinguisher found by state-of-the-art detection techniques, and combined with the relationship between round keys that reduces the involved keys, we give the key recovery attack on the full Pyjamask-96 without the full codebook for the first time. Further, the algebraic and higher-order differential technique does not work for Pyjamask-128, the other member of the Pyjamask block cipher family. To better understand the security margin of Pyjamask-128, we present the first third-party cryptanalysis on Pyjamask-128 up to 11 out of 14 rounds.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This 11.5-round distinguisher works under the chosen-ciphertext scenario, so the last MixRows can be removed naturally, i.e., without the MixRows operation, the distinguisher is actually 11 full rounds. Our 11-round distinguisher (introduced later) works under the chosen-plaintext setting, so we cannot remove the MixRows operation for the distinguisher. However, equivalently, in the key-recovery phase, we can ignore the last MixRows operation also.
References
Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_17
Bar-On, A., Keller, N.: A \(2^{70}\) attack on the full MISTY1. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 435–456. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_16
Boura, C., Canteaut, A.: Another view of the division property. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 654–682. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_24
Boura, C., Coggia, D.: Efficient MILP modelings for sboxes and linear layers of SPN ciphers. IACR Trans. Symmetric Cryptol. 2020(3), 327–361 (2020)
Daemen, J., Knudsen, L., Rijmen, V.: The block cipher square. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052343
Derbez, P., Fouque, P.-A.: Increasing precision of division property. IACR Trans. Symmetric Cryptol. 2020(4), 173–194 (2020)
Dobraunig, C., et al.: Rasta: a cipher with low ANDdepth and few ANDs per bit. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 662–692. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_22
Dobraunig, C., Rotella, Y., Schoone, J.: Algebraic and higher-order differential cryptanalysis of pyjamask-96. IACR Trans. Symmetric Cryptol. 2020(1), 289–312 (2020)
Ferguson, N., et al.: Improved cryptanalysis of rijndael. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 213–230. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44706-7_15
Goudarzi, D., et al.: Pyjamask: block cipher and authenticated encryption with highly efficient masked implementation. IACR Trans. Symmetric Cryptol. 2020(S1), 31–59 (2020)
Hao, Y., Leander, G., Meier, W., Todo, Y., Wang, Q.: Modeling for three-subset division property without unknown subset. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 466–495. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_17
Hebborn, P., Lambin, B., Leander, G., Todo, Y.: Lower bounds on the degree of block ciphers. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part I. LNCS, vol. 12491, pp. 537–566. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_18
Hu, K., Sun, S., Wang, M., Wang, Q.: An algebraic formulation of the division property: revisiting degree evaluations, cube attacks, and key-independent sums. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part I. LNCS, vol. 12491, pp. 446–476. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_15
Knudsen, L.R., Wagner, D.A.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45661-9_9
Krovetz, T., Rogaway, P.: The OCB authenticated-encryption algorithm. RFC 7253, 1–19 (2014)
Lambin, B., Derbez, P., Fouque, P.-A.: Linearly equivalent s-boxes and the division property. Des. Codes Cryptogr. 88(10), 2207–2231 (2020)
Sun, L., Wang, W., Wang, M.: Automatic search of bit-based division property for ARX ciphers and word-based division property. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 128–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_5
Sun, L., Wang, W., Wang, M.: Milp-aided bit-based division property for primitives with non-bit-permutation linear layers. IET Inf. Secur. 14(1), 12–20 (2020)
Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evaluation and (related-key) differential characteristic search: application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 158–178. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_9
Tian, W., Bin, H.: Integral cryptanalysis on two block ciphers pyjamask and uBlock. IET Inf. Secur. 14(5), 572–579 (2020)
Todo, Y.: Integral cryptanalysis on full MISTY1. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 413–432. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_20
Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 287–314. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_12
Todo, Y., Aoki, K.: FFT key recovery for integral attack. In: Gritzalis, D., Kiayias, A., Askoxylakis, I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 64–81. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12280-9_5
Todo, Y., Morii, M.: Bit-based division property and application to Simon family. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_18
Wang, Q., Grassi, L., Rechberger, C.: Zero-sum partitions of PHOTON permutations. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 279–299. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76953-0_15
Wang, Q., Hao, Y., Todo, Y., Li, C., Isobe, T., Meier, W.: Improved division property based cube attacks exploiting algebraic properties of superpoly. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 275–305. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_10
Wang, S., Hu, B., Guan, J., Zhang, K., Shi, T.: MILP-aided method of searching division property using three subsets and applications. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part III. LNCS, vol. 11923, pp. 398–427. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_14
Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching integral distinguishers based on division property for 6 lightweight block ciphers. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 648–678. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_24
Acknowledgements
We thank the anonymous reviewers for their valuable comments. This work is supported by the National Natural Science Foundation of China (Grant No. 62032014), the National Key Research and Development Program of China (Grant No. 2018YFA0704702), the Major Basic Research Project of Natural Science Foundation of Shandong Province, China (Grant No. ZR202010220025). Qingju Wang is funded by Huawei Technologies Co., Ltd (Agreement No.: YBN2020035184).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Cui, J., Hu, K., Wang, Q., Wang, M. (2022). Integral Attacks on Pyjamask-96 and Round-Reduced Pyjamask-128. In: Galbraith, S.D. (eds) Topics in Cryptology – CT-RSA 2022. CT-RSA 2022. Lecture Notes in Computer Science(), vol 13161. Springer, Cham. https://doi.org/10.1007/978-3-030-95312-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-95312-6_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-95311-9
Online ISBN: 978-3-030-95312-6
eBook Packages: Computer ScienceComputer Science (R0)