Abstract
SKINNY-AEAD is one of the second-round candidates of the Lightweight Cryptography Standardization project held by NIST. SKINNY-AEAD M1 is the primary member of six SKINNY-AEAD schemes, while SKINNY-AEAD M3 is another member with a small tag. In the design document, only security analyses of their underlying primitive SKINNY-128-384 are provided. Besides, there are no valid third-party analyses on SKINNY-AEAD M1/M3 according to our knowledge. Therefore, this paper focuses on constructing the first third-party security analyses on them under a nonce-respecting scenario. By taking the encryption mode of SKINNY-AEAD into consideration and exploiting several properties of SKINNY, we can deduce some necessary constraints on the input and tweakey differences of related-tweakey impossible differential distinguishers. Under these constraints, we can find distinguishers suitable for mounting powerful tweakey recovery attacks. With the help of the automatic searching algorithms based on STP, we find some 14-round distinguishers. Based on one of these distinguishers, we mount a 20-round and an 18-round tweakey recovery attack on SKINNY-AEAD M1/M3. To the best of our knowledge, all these attacks are the best ones so far.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
|A| denotes the bit length of associated data A. When \(|A|=0\), there is no encryption of associated data in the tweakey recovery attack.
- 3.
Taking a 20-round tweakey recovery attack as an example, we explain why \(\varDelta \mathcal {TK}_{1}^1[p]=\) 0x03. In the tweakey recovery attacks, if \(\varDelta \mathcal {TK}_{1}^1[p]=\) 0x03, we will utilize plaintext-ciphertext pairs in the i-th and \((i+1)\)-th block of encryptions in SKINNY-AEAD M1/M3, where \(i= 8 \cdot ((P_T^{-1}) \circ (P_T^{-1}(p))) +1\), which needs less time complexity than other values once p is fixed.
- 4.
- 5.
\(p_i\) and \(p_o\) denote the active cell positions corresponding to the input and out differences of the distinguisher, respectively.
- 6.
We define the master tweakey corresponding to Key as master key MK.
References
SKINNY-AEAD and SKINNY-Hash: NIST LWC second-round candidate status update (2020). https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/status-update-sep2020/SKINNY-AEAD_and_SKINNY-Hash_status_update.pdf
Ankele, R., et al.: Related-key impossible-differential attack on reduced-round Skinny. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 208–228. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1_11
Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 825–885. IOS Press (2009). https://doi.org/10.3233/978-1-58603-929-5-825
Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_5
Beierle, C., et al.: SKINNY-AEAD and skinny-hash. IACR Trans. Symmetric Cryptol. 2020(S1), 88–131 (2020). https://doi.org/10.13154/tosc.v2020.iS1.88-131
Biham, E.: New types of cryptanalytic attacks using related keys. J. Cryptol. 7(4), 229–246 (1994). https://doi.org/10.1007/BF00203965
Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31 rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_2
Boura, C., Naya-Plasencia, M., Suder, V.: Scrutinizing and improving impossible differential attacks: applications to CLEFIA, camellia, LBlock and Simon. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 179–199. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_10
Hadipour, H., Bagheri, N., Song, L.: Improved rectangle attacks on SKINNY and CRAFT. IACR Trans. Symmetric Cryptol. 2021(2), 140–198 (2021). https://doi.org/10.46586/tosc.v2021.i2.140-198
Jakimoski, G., Desmedt, Y.: Related-key differential cryptanalysis of 192-bit key AES variants. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 208–221. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24654-1_15
Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 274–288. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_15
Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher family. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 161–185. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_8
Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9_18
Li, M., Hu, K., Wang, M.: Related-tweak statistical saturation cryptanalysis and its application on QARMA. IACR Trans. Symmetric Cryptol. 2019(1), 236–263 (2019). https://doi.org/10.13154/tosc.v2019.i1.236-263
Liu, G., Ghosh, M., Song, L.: Security analysis of SKINNY under related-tweakey settings (long paper). IACR Trans. Symmetric Cryptol. 2017(3), 37–72 (2017). https://doi.org/10.13154/tosc.v2017.i3.37-72
Liu, Y., Wang, Q., Rijmen, V.: Automatic search of linear trails in ARX with applications to SPECK and chaskey. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 485–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5_26
Longo, G., Zilli, M.V.: Complexity of theorem-proving procedures: some general properties. RAIRO Theor. Informatics Appl. 8(3), 5–18 (1974). https://doi.org/10.1051/ita/197408R300051
Niu, C., Li, M., Sun, S., Wang, M.: Zero-correlation linear cryptanalysis with equal treatment for plaintexts and tweakeys. In: Paterson, K.G. (ed.) CT-RSA 2021. LNCS, vol. 12704, pp. 126–147. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75539-3_6
Sadeghi, S., Mohammadi, T., Bagheri, N.: Cryptanalysis of reduced round SKINNY block cipher. IACR Trans. Symmetric Cryptol. 2018(3), 124–162 (2018). https://doi.org/10.13154/tosc.v2018.i3.124-162
Shi, D., Sun, S., Derbez, P., Todo, Y., Sun, B., Hu, L.: Programming the Demirci-Selçuk meet-in-the-middle attack with constraints. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 3–34. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_1
Tolba, M., Abdelkhalek, A., Youssef, A.M.: Impossible differential cryptanalysis of reduced-round SKINNY. In: Joye, M., Nitaj, A. (eds.) AFRICACRYPT 2017. LNCS, vol. 10239, pp. 117–134. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57339-7_7
Zhao, B., Dong, X., Meier, W., Jia, K., Wang, G.: Generalized related-key rectangle attacks on block ciphers with linear key schedule: applications to SKINNY and GIFT. Des. Codes Crypt. 88(6), 1103–1126 (2020). https://doi.org/10.1007/s10623-020-00730-1
Acknowledgements
This work has been supported by the National Natural Science Foundation of China (Grant No. 62032014 and Grant No. 62002204), the National Key Research and Development Program of China (Grant No. 2018YFA0704702), the Major Basic Research Project of Natural Science Foundation of Shandong Province, China (Grant No. ZR202010220025).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Fan, Y., Li, M., Niu, C., Lu, Z., Wang, M. (2022). Related-Tweakey Impossible Differential Attack on Reduced-Round SKINNY-AEAD M1/M3. In: Galbraith, S.D. (eds) Topics in Cryptology – CT-RSA 2022. CT-RSA 2022. Lecture Notes in Computer Science(), vol 13161. Springer, Cham. https://doi.org/10.1007/978-3-030-95312-6_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-95312-6_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-95311-9
Online ISBN: 978-3-030-95312-6
eBook Packages: Computer ScienceComputer Science (R0)