Skip to main content

Private Liquidity Matching Using MPC

  • Conference paper
  • First Online:
Topics in Cryptology – CT-RSA 2022 (CT-RSA 2022)

Abstract

Many central banks, as well as blockchain systems, are looking into distributed versions of interbank payment systems, in particular the netting procedure. When executed in a distributed manner this presents a number of privacy problems. This paper studies a privacy-preserving netting protocol to solve the gridlock resolution problem in such Real Time Gross Settlement systems. Our solution utilizes Multi-party Computation and is implemented in the SCALE MAMBA system, using Shamir secret sharing scheme over three parties in an actively secure manner. Our experiments show that, even for large throughput systems, such a privacy-preserving operation is often feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The algorithm from [6] removes just one transaction of a source with a negative balance at this point, but it is equivalent to removing one transaction from each source which has a negative balance.

  2. 2.

    https://www.federalreserve.gov/paymentsystems/fedfunds_about.htm.

  3. 3.

    https://www.frbservices.org/resources/financial-services/wires/volume-value-stats/monthly-stats.html.

  4. 4.

    https://www.ecb.europa.eu/pub/targetar/html/ecb.targetar2019.en.html.

References

  1. Aspembitova, A., Feng, L., Melnikov, V., Chew, L.Y.: Fitness preferential attachment as a driving mechanism in bitcoin transaction network. PLoS One 14, e0219346 (2019)

    Google Scholar 

  2. Abbe, E., Khandani, A.E., Lo, A.W.: Privacy-preserving methods for sharing financial risk exposures. CoRR abs/1111.5228 (2011)

    Google Scholar 

  3. Aly, A., et al.: SCALE and MAMBA v1.14: documentation (2021). https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf

  4. Asharov, G., Balch, T.H., Polychroniadou, A., Veloso, M.: Privacy-preserving dark pools. In: Seghrouchni, A.E.F., Sukthankar, G., An, B., Yorke-Smith, N. (eds.) Proceedings of the 19th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2020, Auckland, New Zealand, 9–13, May 2020, pp. 1747–1749. International Foundation for Autonomous Agents and Multiagent Systems (2020)

    Google Scholar 

  5. Bag, S., Hao, F., Shahandashti, S.F., Ray, I.G.: SEAL: sealed-bid auction without auctioneers. IEEE Trans. Inf. Forensics Secur. 15, 2042–2052 (2020)

    Article  Google Scholar 

  6. Bech, M., Soramaki, K.: Gridlock resolution in payment systems. Danmarks Nationalbank Monetary Review, July (2001)

    Google Scholar 

  7. Bogdanov, D., Talviste, R., Willemson, J.: Deploying secure multi-party computation for financial data analysis. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 57–64. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3_5

    Chapter  Google Scholar 

  8. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03549-4_20

    Chapter  Google Scholar 

  9. Bogetoft, P., Damgård, I., Jakobsen, T., Nielsen, K., Pagter, J., Toft, T.: A practical implementation of secure auctions based on multiparty integer computation. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 142–147. Springer, Heidelberg (2006). https://doi.org/10.1007/11889663_10

    Chapter  Google Scholar 

  10. Boss, M., Elsinger, H., Summer, M., Thurner, S.: Network topology of the interbank market. Quant. Financ. 4(6), 677–684 (2004)

    Article  Google Scholar 

  11. Byrd, D., Polychroniadou, A.: Differentially private secure multi-party computation for federated learning in financial applications. In: ICAIF 2020: The First ACM International Conference on AI in Finance, New York, NY, USA, 15–16, October 2020, pp. 16:1–16:9 (2020)

    Google Scholar 

  12. Cao, S., Yuan, Y., De Caro, A., Nandakumar, K., Elkhiyaoui, K., Hu, Y.: Decentralized privacy-preserving netting protocol on blockchain for payment systems. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 137–155. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4_9

    Chapter  Google Scholar 

  13. Cartlidge, J., Smart, N.P., Alaoui, Y.T.: Multi-party computation mechanism for anonymous equity block trading: a secure implementation of turquoise plato uncross. Cryptology ePrint Archive, Report 2020/662 (2020). https://eprint.iacr.org/2020/662

  14. Cartlidge, J., Smart, N.P., Talibi Alaoui, Y.: MPC joins the dark side. In: Galbraith, S.D., Russello, G., Susilo, W., Gollmann, D., Kirda, E., Liang, Z. (eds.) ASIACCS 2019: 14th ACM Symposium on Information, Computer and Communications Security, pp. 148–159. ACM Press, Auckland, New Zealand 9–12, July 2019

    Google Scholar 

  15. Catrina, O., de Hoogh, S.: Improved primitives for secure multiparty integer computation. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 182–199. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-4_13

    Chapter  MATH  Google Scholar 

  16. Catrina, O., Saxena, A.: Secure computation with fixed-point numbers. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 35–50. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14577-3_6

    Chapter  Google Scholar 

  17. Chapman, J., ans Scott Hendry, R.G., McCormack, A., McMahon, W.: Project jasper: are distributed wholesale payment systems feasible yet? https://www.finextra.com/finextra-downloads/newsdocs/fsr-june-2017-chapman.pdf

  18. Cohen, R., Havlin, S., Ben-Avraham, D.: Structural Properties of Scale-free Networks, pp. 85–110. Wiley, Hoboken (2003)

    Google Scholar 

  19. Cozzo, D., Smart, N.P., Alaoui, Y.T.: Secure fast evaluation of iterative methods: with an application to secure pagerank. In: Paterson, K.G. (ed.) CT-RSA 2021. LNCS, vol. 12704, pp. 1–25. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75539-3_1

    Chapter  Google Scholar 

  20. Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_15

    Chapter  Google Scholar 

  21. ECB: Target 2. https://www.ecb.europa.eu/paym/target/target2/html/index.en.html

  22. European Central Bank and Bank of Japan: Payment systems: liquidity saving mechanisms in a distributed ledger environment. https://www.ecb.europa.eu/pub/pdf/other/ecb.stella_project_report_september_2017.pdf

  23. Galbiati, M., Soramaki, K.: Liquidity-saving mechanisms and bank behaviour. Bank of England, Bank of England working papers, July 2010

    Google Scholar 

  24. Guntzer, M.M., Jungnickel, D., Leclerc, M.: Efficient algorithms for the clearing of interbank payments. Eur. J. Oper. Res. 106(1), 212–219 (1998)

    Article  Google Scholar 

  25. Hastings, M., Falk, B., Tsoukalas, G.: Privacy-preserving network analytics, August 2020

    Google Scholar 

  26. Inaoka, H., Ninomiya, T., Taniguchi, K., Shimizu, T., Takayasu, H.: Fractal Network derived from banking transaction - an analysis of network structures formed by financial institutions. Bank of Japan Working Paper Series 04-E-4, Bank of Japan, April 2004

    Google Scholar 

  27. Keller, M., Scholl, P.: Efficient, oblivious data structures for MPC. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 506–525. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_27

    Chapter  Google Scholar 

  28. Monetary Authority of Singapore: Project Ubin: Cntral bank digital money using distributed ledger technology. https://www.mas.gov.sg/schemes-and-initiatives/Project-Ubin

  29. Parkes, D.C., Rabin, M.O., Shieber, S.M., Thorpe, C.: Practical secrecy-preserving, verifiably correct and trustworthy auctions. Electron. Commer. Res. Appl. 7(3), 294–312 (2008)

    Article  Google Scholar 

  30. Sangers, A., et al.: Secure multiparty pagerank algorithm for collaborative fraud detection. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS, vol. 11598, pp. 605–623. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32101-7_35

    Chapter  Google Scholar 

  31. Shafransky, Y.M., Doudkin, A.A.: An optimization algorithm for the clearing of interbank payments. Eur. J. Oper. Res. 171(3), 743–749 (2006)

    Article  Google Scholar 

  32. Smart, N.P., Wood, T.: Error detection in monotone span programs with application to communication-efficient multi-party computation. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 210–229. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_11

    Chapter  Google Scholar 

  33. Soramaki, K., Bech, M.L., Arnold, J., Glass, R.J., Beyeler, W.E.: The topology of interbank payment flows. Phys. A Stat. Mech. Appl. 379(1), 317–333 (2007)

    Article  Google Scholar 

  34. Soramaki, K., Cook, S.: Sinkrank: an algorithm for identifying systemically important banks in payment systems. Econ. Open-Access, Open-Assess. E-J. 7, 2013–2028 (2013)

    Google Scholar 

  35. Wang, X., Xu, X., Feagan, L., Huang, S., Jiao, L., Zhao, W.: Inter-bank payment system on enterprise blockchain platform. In: 11th IEEE International Conference on Cloud Computing, CLOUD 2018, San Francisco, CA, USA, 2–7, July 2018, pp. 614–621. IEEE Computer Society (2018)

    Google Scholar 

  36. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th Annual Symposium on Foundations of Computer Science, pp. 162–167. IEEE Computer Society Press, Toronto, Ontario, Canada 27–29, October 1986

    Google Scholar 

Download references

Acknowledgments

We would like to thank Cedric Humbert of the European Central Bank for suggesting we look into this problem, and answering various questions we had along the way. This work has been supported in part by ERC Advanced Grant ERC-2015-AdG-IMPaCT, by the FWO under an Odysseus project GOH9718N, and by CyberSecurity Research Flanders with reference number VR20192203.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel P. Smart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Atapoor, S., Smart, N.P., Alaoui, Y.T. (2022). Private Liquidity Matching Using MPC. In: Galbraith, S.D. (eds) Topics in Cryptology – CT-RSA 2022. CT-RSA 2022. Lecture Notes in Computer Science(), vol 13161. Springer, Cham. https://doi.org/10.1007/978-3-030-95312-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95312-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95311-9

  • Online ISBN: 978-3-030-95312-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics