Skip to main content

GradMFL: Gradient Memory-Based Federated Learning for Hierarchical Knowledge Transferring Over Non-IID Data

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13155))

Abstract

The massive datasets are often collected under non-IID distribution scenarios, which enforces existing federated learning (FL) frameworks to be still struggling on the model accuracy and convergence. To achieve heterogeneity-aware collaborative training, the FL server aggregates gradients from different clients to ingest and transfer common knowledge behind non-IID data, while leading to information loss and bias due to statistical weighting. To address the above issues, we propose a Gradient Memory-based Federated Learning (GradMFL) framework, which enables Hierarchical Knowledge Transferring over Non-IID Data. In GradMFL, a data clustering method is proposed to categorize Non-IID data to IID data according to the similarity. And then, in order to enable beneficial knowledge transferring between hierarchical clusters, we also present a multi-stage model training mechanism using gradient memory, constraining the updating directions. Experiments on solving a set of classification tasks based on benchmark datasets have shown the strong performance of good accuracy and high efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yan, Z., Wu, J., Li, G., Li, S., Guizani, M.: Deep neural backdoor in semi-supervised learning: threats and countermeasures. IEEE Trans. Inf. Forensics Secur. 16, 4827–4842 (2021). https://doi.org/10.1109/TIFS.2021.3116431

    Article  Google Scholar 

  2. Huang, X., Leng, S., Maharjan, S., Zhang, Y.: Multi-agent deep reinforcement learning for computation offloading and interference coordination in small cell networks. IEEE Trans. Veh. Technol. 70(9), 9282–9293 (2021). https://doi.org/10.1109/TVT.2021.3096928

    Article  Google Scholar 

  3. Yang, Q., Liu, Y., Cheng, Y., Kang, Y., Chen, T., Yu, H.: Federated learning. Synth. Lect. Artif. Intell. Mach. Learn. 13(3), 1–207 (2019)

    Google Scholar 

  4. Wu, Y., Zhang, K., Zhang, Y.: Digital twin networks: a survey. IEEE Internet Things J. 8(18), 13789–13804 (2021). https://doi.org/10.1109/JIOT.2021.3079510

    Article  Google Scholar 

  5. McMahan, H.B., Moore, E., Ramage, D., Arcas, B.A.Y.: Federated learning of deep networks using model averaging. CoRR abs/1602.05629 (2016)

    Google Scholar 

  6. Kairouz, P., et al.: Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977 (2019)

  7. Wang, J., Liu, Q., Liang, H., Joshi, G., Poor, H.V.: Tackling the objective inconsistency problem in heterogeneous federated optimization. arXiv preprint arXiv:2007.07481 (2020)

  8. Nielsen, F.: Hierarchical clustering. In: Introduction to HPC with MPI for Data Science. UTCS, pp. 195–211. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-21903-5_8

    Chapter  Google Scholar 

  9. Pfülb, B., Gepperth, A., Abdullah, S., Kilian, A.: Catastrophic forgetting: still a problem for DNNs. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11139, pp. 487–497. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01418-6_48

    Chapter  Google Scholar 

  10. Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017, pp. 6467–6476 (2017)

    Google Scholar 

  11. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. 10(2), 12:1-12:19 (2019). https://doi.org/10.1145/3298981

    Article  Google Scholar 

  12. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127 (2018)

  13. Smith, V., Chiang, C.K., Sanjabi, M., Talwalkar, A.: Federated multi-task learning. arXiv preprint arXiv:1705.10467 (2017)

  14. Sattler, F., Müller, K.R., Samek, W.: Clustered federated learning: model-agnostic distributed multitask optimization under privacy constraints. IEEE Trans. Neural Netw. Learn. Syst. 32(8), 3710–3722 (2020)

    Google Scholar 

  15. Briggs, C., Fan, Z., Andras, P.: Federated learning with hierarchical clustering of local updates to improve training on non-IID data. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–9. IEEE (2020)

    Google Scholar 

  16. Delange, M., et al.: A continual learning survey: defying forgetting in classification tasks. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

    Google Scholar 

  17. Kemker, R., McClure, M., Abitino, A., Hayes, T., Kanan, C.: Measuring catastrophic forgetting in neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  18. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. CoRR abs/1612.00796 (2016)

    Google Scholar 

  19. Xiao, T., Zhang, J., Yang, K., Peng, Y., Zhang, Z.: Error-driven incremental learning in deep convolutional neural network for large-scale image classification. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 177–186 (2014)

    Google Scholar 

  20. Chaudhry, A., Ranzato, M., Rohrbach, M., Elhoseiny, M.: Efficient lifelong learning with A-GEM. arXiv preprint arXiv:1812.00420 (2018)

  21. Pan, Q., Wu, J., Bashir, A.K., Li, J., Yang, W., Al-Otaibi, Y.D.: Joint protection of energy security and information privacy for energy harvesting: An incentive federated learning approach. IEEE Trans. Ind. Inform. (2021). https://doi.org/10.1109/TII.2021.3105492

  22. Zhang, C., Xie, Y., Bai, H., Yu, B., Li, W., Gao, Y.: A survey on federated learning. Knowl.-Based Syst. 216, 106775 (2021)

    Article  Google Scholar 

  23. Li, M., Li, J., Ou, Y., Zhang, Y., Luo, D., Bahtia, M., Cao, L.: Coupled K-nearest centroid classification for non-IID data. In: Nguyen, N.T., Kowalczyk, R., Corchado, J.M., Bajo, J. (eds.) Transactions on Computational Collective Intelligence XV. LNCS, vol. 8670, pp. 89–100. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44750-5_5

    Chapter  Google Scholar 

  24. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

Download references

Acknowledgement

This work is supported by National Natural Science Foundation of China under Grant No. U20B2048 and 61972255, Shanghai Sailing Program under Grant No. 21YF1421700, Special Fund for Industrial Transformation and Upgrading Development of Shanghai Under Grant No. GYQJ-2018-3-03 and Shanghai Municipal Science and Technology Major Project under Grant 2021SHZDZX0102.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gaolei Li or Jun Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tong, G., Li, G., Wu, J., Li, J. (2022). GradMFL: Gradient Memory-Based Federated Learning for Hierarchical Knowledge Transferring Over Non-IID Data. In: Lai, Y., Wang, T., Jiang, M., Xu, G., Liang, W., Castiglione, A. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2021. Lecture Notes in Computer Science(), vol 13155. Springer, Cham. https://doi.org/10.1007/978-3-030-95384-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95384-3_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95383-6

  • Online ISBN: 978-3-030-95384-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics