Skip to main content

Privacy-Preserving and Reliable Federated Learning

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13157))

Abstract

In Internet of Things (IoT), it is often impossible to share datasets owned by different participants (usually IoT devices) for machine learning model training due to privacy concerns. Federated learning (FL) is a promising technique to address this challenge. However, existing FL schemes face the problem of how to avoid low-quality/malicious update. To solve this problem, we propose a privacy-preserving and reliable federated learning scheme (PPRFLS) to select reliable participants and evaluate the quality of the participants’ updates. Analysis shows that the proposed scheme achieves data privacy and model reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The elbow method [5] can be used to select the value m.

References

  1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS’16, pp. 308–318. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2976749.2978318

  2. Aono, Y., Hayashi, T., Wang, L., Moriai, S., et al.: Privacy-preserving deep learning via additively homomorphic encryption. IEEE Trans. Inf. Forensics Secur. 13(5), 1333–1345 (2017)

    Google Scholar 

  3. Awan, S., Luo, B., Li, F.: CONTRA: defending against poisoning attacks in federated learning. In: Bertino, E., Shulman, H., Waidner, M. (eds.) ESORICS 2021. LNCS, vol. 12972, pp. 455–475. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88418-5_22

    Chapter  Google Scholar 

  4. Barreno, M., Nelson, B., Joseph, A.D., Tygar, J.D.: The security of machine learning. Mach. Learn. 81(2), 121–148 (2010). https://doi.org/10.1007/s10994-010-5188-5

    Article  MathSciNet  MATH  Google Scholar 

  5. Bholowalia, P., Kumar, A.: EBK-means: a clustering technique based on elbow method and k-means in WSN. Int. J. Comput. Appl. 105(9), 17–24 (2014)

    Google Scholar 

  6. Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine learning, pp. 1175–1191. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3133956.3133982

  7. Chen, T., Zhang, L., Choo, K.K.R., Zhang, R., Meng, X.: Blockchain-based key management scheme in fog-enabled IoT systems. IEEE Internet Things J. 8(13), 10766–10778 (2021)

    Article  Google Scholar 

  8. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_15

    Chapter  Google Scholar 

  9. Collobert, R., Weston, J.: A unified architecture for natural language processing: deep neural networks with multitask learning. In: Proceedings of the 25th International Conference on Machine Learning, ICML’08, pp. 160–167. Association for Computing Machinery, New York (2008). https://doi.org/10.1145/1390156.1390177

  10. Duan, M., et al.: FedGroup: ternary cosine similarity-based clustered federated learning framework toward high accuracy in heterogeneity data. arXiv preprint arXiv:2010.06870 (2020)

  11. Fang, M., Cao, X., Jia, J., Gong, N.: Local model poisoning attacks to byzantine-robust federated learning. In: 29th USENIX Security Symposium (USENIX Security 20), pp. 1605–1622. USENIX Association (2020)

    Google Scholar 

  12. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  Google Scholar 

  13. Fung, C., Yoon, C.J.M., Beschastnikh, I.: The limitations of federated learning in sybil settings. In: 23rd International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2020), pp. 301–316. USENIX Association, San Sebastian (2020)

    Google Scholar 

  14. Fung, C., Yoon, C.J., Beschastnikh, I.: Mitigating sybils in federated learning poisoning. arXiv preprint arXiv:1808.04866 (2018)

  15. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.: CryptoNets: applying neural networks to encrypted data with high throughput and accuracy. In: Balcan, M.F., Weinberger, K.Q. (eds.) Proceedings of The 33rd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 48, pp. 201–210. PMLR, New York (2016)

    Google Scholar 

  16. Jothi, R., Mohanty, S.K., Ojha, A.: DK-means: a deterministic k-means clustering algorithm for gene expression analysis. Pattern Anal. Appl. 22(2), 649–667 (2019). https://doi.org/10.1007/s10044-017-0673-0

    Article  MathSciNet  Google Scholar 

  17. Kang, J., Xiong, Z., Niyato, D., Xie, S., Zhang, J.: Incentive mechanism for reliable federated learning: a joint optimization approach to combining reputation and contract theory. IEEE Internet Things J. 6(6), 10700–10714 (2019)

    Article  Google Scholar 

  18. Kang, J., Xiong, Z., Niyato, D., Zou, Y., Zhang, Y., Guizani, M.: Reliable federated learning for mobile networks. IEEE Wirel. Commun. 27(2), 72–80 (2020)

    Article  Google Scholar 

  19. Liu, J., et al.: Secure intelligent traffic light control using fog computing. Futur. Gener. Comput. Syst. 78, 817–824 (2018)

    Article  Google Scholar 

  20. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.Y.: Communication-efficient learning of deep networks from decentralized data. In: Singh, A., Zhu, J. (eds.) Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 54, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  21. Meng, X., Zhang, L., Kang, B.: Fast secure and anonymous key agreement against bad randomness for cloud computing. IEEE Trans. Cloud Comput. (2020). https://doi.org/10.1109/TCC.2020.3008795

    Article  Google Scholar 

  22. Rehman, M.H.U., Dirir, A.M., Salah, K., Damiani, E., Svetinovic, D.: TrustFed: a framework for fair and trustworthy cross-device federated learning in IIoT. IEEE Trans. Ind. Inform. 17(12), 8485–8494 (2021)

    Article  Google Scholar 

  23. Sattler, F., Müller, K.R., Samek, W.: Clustered federated learning: model-agnostic distributed multitask optimization under privacy constraints. IEEE Trans. Neural Netw. Learn. Syst. 32(8), 3710–3722 (2021). https://doi.org/10.1109/TNNLS.2020.3015958

    Article  MathSciNet  Google Scholar 

  24. Shayan, M., Fung, C., Yoon, C.J., Beschastnikh, I.: Biscotti: a ledger for private and secure peer-to-peer machine learning. arXiv preprint arXiv:1811.09904 (2018)

  25. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against machine learning models. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 3–18 (2017). https://doi.org/10.1109/SP.2017.41

  26. Song, L., Shokri, R., Mittal, P.: Privacy risks of securing machine learning models against adversarial examples. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS’19, pp. 241–257. Association for Computing Machinery, New York (2019) . https://doi.org/10.1145/3319535.3354211

  27. Tran, N.H., Bao, W., Zomaya, A., Nguyen, M.N.H., Hong, C.S.: Federated learning over wireless networks: optimization model design and analysis. In: IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, pp. 1387–1395 (2019). https://doi.org/10.1109/INFOCOM.2019.8737464

  28. Truex, S., et al.: A hybrid approach to privacy-preserving federated learning. In: Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security, AISec’19, pp. 1–11. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3338501.3357370

  29. Wang, X., Han, Y., Wang, C., Zhao, Q., Chen, X., Chen, M.: In-edge AI: intelligentizing mobile edge computing, caching and communication by federated learning. IEEE Netw. 33(5), 156–165 (2019)

    Article  Google Scholar 

  30. Wei, K., et al.: Federated learning with differential privacy: algorithms and performance analysis. IEEE Trans. Inf. Forensics Secur. 15, 3454–3469 (2020)

    Article  Google Scholar 

  31. Yao, S., et al.: Deep learning for the Internet of Things. Computer 51(5), 32–41 (2018)

    Article  Google Scholar 

  32. Yeom, S., Giacomelli, I., Fredrikson, M., Jha, S.: Privacy risk in machine learning: analyzing the connection to overfitting. In: 2018 IEEE 31st Computer Security Foundations Symposium (CSF), pp. 268–282 (2018). https://doi.org/10.1109/CSF.2018.00027

  33. Zhang, C., Li, S., Xia, J., Wang, W., Yan, F., Liu, Y.: BatchCrypt: efficient homomorphic encryption for cross-silo federated learning. In: 2020 USENIX Annual Technical Conference (USENIX ATC 20), pp. 493–506. USENIX Association (2020)

    Google Scholar 

  34. Zhang, L.: Key management scheme for secure channel establishment in fog computing. IEEE Trans. Cloud Comput. 9(3), 1117–1128 (2021)

    Article  Google Scholar 

  35. Zhang, L., Meng, X., Choo, K.K.R., Zhang, Y., Dai, F.: Privacy-preserving cloud establishment and data dissemination scheme for vehicular cloud. IEEE Trans. Dependable Secure Comput. 17(3), 634–647 (2020)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the NSF of China under Grants 61972159, 61572198; by the Open Research Fund of Engineering Research Center of Software/Hardware Co-design Technology and Application, Ministry of Education (East China Normal University); by Guangxi Key Laboratory of Cryptography and Information Security (No. GCIS202109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, Y., Zhang, L., Wang, L., Gao, Y. (2022). Privacy-Preserving and Reliable Federated Learning. In: Lai, Y., Wang, T., Jiang, M., Xu, G., Liang, W., Castiglione, A. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2021. Lecture Notes in Computer Science(), vol 13157. Springer, Cham. https://doi.org/10.1007/978-3-030-95391-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95391-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95390-4

  • Online ISBN: 978-3-030-95391-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics