Skip to main content

Are Rumors Always False?: Understanding Rumors Across Domains, Queries, and Ratings

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13087))

Included in the following conference series:

  • 1259 Accesses

Abstract

Rumors are increasingly becoming a critical issue on the Web threatening democracy, economics, and society on a global scale. With the advance of social media networks, people are sharing content in an unprecedented scale. This makes social platforms such as microblogs an ideal place for spreading rumors. Although rumors may have a severe impact in the real world, there is not enough large-scale study regarding the characteristics of rumors. In this paper, by studying more than 1000 rumors with over 4 million tweets from about 3 million users, we aim to provide several insights in order to understand the distribution, correlation, and propagation of rumors, especially user behaviors, spatial and temporal characteristics. All the rumor data are publicly available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://docs.spinn3r.com/.

  2. 2.

    http://tiny.cc/p1s2qy.

References

  1. https://www.cfr.org/report/deep-fake-disinformation-steroids

  2. http://tiny.cc/p1s2qy

  3. Is this viral list of U.S. government emergency aid sent to puerto rico accurate? (2021). https://www.snopes.com/fact-check/trump-aid-puerto-rico/

  4. Zhou, X et al.: Fake news: a survey of research, detection methods, and opportunities. arXiv:1812.00315 (2018)

  5. Allen, R.: What happens online in 60 seconds? http://tiny.cc/m1my2y (2017)

  6. Aspray, W., Cortada, J.W.: From debunking urban legends to political fact-checking. In: From Urban Legends to Political Fact-Checking. HC, pp. 9–39. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22952-8_2

    Chapter  Google Scholar 

  7. Berinsky, A.J.: Rumors and health care reform: experiments in political misinformation. Br. J. Polit. Sci. 47(2), 241–262 (2017)

    Article  Google Scholar 

  8. Castillo, C., Mendoza, M., Poblete, B.: Information credibility on twitter. In: WWW, pp. 675–684 (2011)

    Google Scholar 

  9. Garrett, R.K., Poulsen, S.: Flagging Facebook falsehoods: self-identified humor warnings outperform fact checker and peer warnings. J. Comput.-Mediated Commun. 24(5), 240–258 (2019)

    Article  Google Scholar 

  10. Garrett, R.K., Weeks, B.E.: The promise and peril of real-time corrections to political misperceptions. In: CSCW, pp. 1047–1058 (2013)

    Google Scholar 

  11. Gupta, A., Kumaraguru, P., Castillo, C., Meier, P.: Tweetcred: real-time credibility assessment of content on twitter. In: ICSI, pp. 228–243 (2014)

    Google Scholar 

  12. Hooi, B., Song, H.A., Beutel, A., Shah, N., Shin, K., Faloutsos, C.: Fraudar: bounding graph fraud in the face of camouflage. In: KDD, pp. 895–904 (2016)

    Google Scholar 

  13. Hung, N.Q.V., Tam, N.T., Tran, L.N., Aberer, K.: An evaluation of aggregation techniques in crowdsourcing. In: WISE, pp. 1–15 (2013)

    Google Scholar 

  14. Kirchner, J., Reuter, C.: Countering fake news: a comparison of possible solutions regarding user acceptance and effectiveness. In: CSCW, vol. 4, pp. 1–27 (2020)

    Google Scholar 

  15. Kwon, S., Cha, M., Jung, K.: Rumor detection over varying time windows. PLoS ONE 12(1), e0168344 (2017)

    Article  Google Scholar 

  16. Ma, J., et al.: Detecting rumors from microblogs with recurrent neural networks. In: IJCAI (2016)

    Google Scholar 

  17. Mena, P.: Cleaning up social media: the effect of warning labels on likelihood of sharing false news on Facebook. Policy Internet 12(2), 165–183 (2020)

    Article  MathSciNet  Google Scholar 

  18. Nguyen, Q.V.H., Nguyen, T.T., Miklós, Z., Aberer, K., Gal, A., Weidlich, M.: Pay-as-you-go reconciliation in schema matching networks. In: ICDE, pp. 220–231 (2014)

    Google Scholar 

  19. Nguyen, T.T., et al.: Monitoring agriculture areas with satellite images and deep learning. Appl. Soft Comput. 95, 106565 (2020)

    Article  Google Scholar 

  20. Nguyen, T.T., Phan, T.C., Nguyen, Q.V.H., Aberer, K., Stantic, B.: Maximal fusion of facts on the web with credibility guarantee. Inf. Fusion 48, 55–66 (2019)

    Article  Google Scholar 

  21. Sethi, R.J.: Crowdsourcing the verification of fake news and alternative facts. In: HT, pp. 315–316 (2017)

    Google Scholar 

  22. Shu, K., Wang, S., Liu, H.: Beyond news contents: the role of social context for fake news detection. In: WSDM, pp. 312–320 (2019)

    Google Scholar 

  23. Tam, N.T., Weidlich, M., Zheng, B., Yin, H., Hung, N.Q.V., Stantic, B.: From anomaly detection to rumour detection using data streams of social platforms. PVLDB 12(9), 1016–1029 (2019)

    Google Scholar 

  24. Thanh Tam, N., Weidlich, M., Yin, H., Zheng, B., Quoc Viet Hung, N., Stantic, B.: User guidance for efficient fact checking. PVLDB 12(8), 850–863 (2019)

    Google Scholar 

  25. Trung, H.T., Van Vinh, T., Tam, N.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: ICDE, pp. 85–96 (2020)

    Google Scholar 

  26. Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science 359(6380), 1146–1151 (2018)

    Article  Google Scholar 

  27. Wood, T., Porter, E.: The elusive backfire effect: mass attitudes steadfast factual adherence. Polit. Behav. 41(1), 135–163 (2019)

    Article  Google Scholar 

  28. Wu, K., Yang, S., Zhu, K.Q.: False rumors detection on Sina Weibo by propagation structures. In: ICDE, pp. 651–662 (2015)

    Google Scholar 

  29. Yang, F., Liu, Y., Yu, X., Yang, M.: Automatic detection of rumor on Sina Weibo. In: MDS, p. 13 (2012)

    Google Scholar 

  30. Zhao, Z., Resnick, P., Mei, Q.: Enquiring minds: early detection of rumors in social media from enquiry posts. In: WWW, pp. 1395–1405 (2015)

    Google Scholar 

  31. Zhou, X., Zafarani, R.: A survey of fake news: fundamental theories, detection methods, and opportunities. CSUR 53(5), 1–40 (2020)

    Article  Google Scholar 

  32. Zubiaga, A., Aker, A., Bontcheva, K., Liakata, M., Procter, R.: Detection and resolution of rumours in social media: a survey. arXiv:1704.00656 (2017)

Download references

Acknowledgments

This work was supported by ARC Discovery Early Career Researcher Award (Grant No. DE200101465).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh Tam Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chau, X.T.D., Nguyen, T.T., Jo, J., Nguyen, Q.V.H. (2022). Are Rumors Always False?: Understanding Rumors Across Domains, Queries, and Ratings. In: Li, B., et al. Advanced Data Mining and Applications. ADMA 2022. Lecture Notes in Computer Science(), vol 13087. Springer, Cham. https://doi.org/10.1007/978-3-030-95405-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95405-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95404-8

  • Online ISBN: 978-3-030-95405-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics