Skip to main content

Constrained Energy Minimization for Hyperspectral Multi-target Detection Based on Ensemble Learning

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13088))

Included in the following conference series:

  • 865 Accesses

Abstract

The traditional hyperspectral target detection usually recognizes a single type of object at one time. However, there are usually various categories of targets in real scenarios, and it is necessary to simultaneously detect multiple types of targets. Although some detection methods have been proposed, most of them suffer from the limited non-linear spectral expression ability to distinguish different types of hyperspectral targets. To overcome this problem, we propose an ensemble learning-based multi-objective constrained energy minimization (E-IMTCEM) for hyperspectral multi-target detection in this paper. Specifically, E-IMTCEM combines ensemble learning to improve both the non-linear spectral expression ability and detection ability in the task of hyperspectral multi-target detection. The experimental results on simulated hyperspectral images show the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manolakis, D., Marden, D., Shaw, G.A.: Hyperspectral image processing for automatic target detection applications. Linc. Lab. J. 14(1), 79–116 (2003)

    Google Scholar 

  2. Shaw, G.A., Burke, H.K.: Spectral imaging for remote sensing. Linc. Lab. J. 14(1), 2–28 (2003)

    Google Scholar 

  3. Shi, Z., Qin, Z., Yang, S.: Spatial multiple materials detection in hyperspectral imagery. In: IEEE 3rd International Conference on Awareness Science and Technology (iCAST), pp. 76–80 (2011)

    Google Scholar 

  4. Zhao, R., Shi, Z., Zou, Z.: Ensemble-based cascaded constrained energy minimization for hyperspectral target detection. Remote Sens. 11(11), 1310 (2019)

    Article  Google Scholar 

  5. Winter, E.M., Miller, M.A., Simi, C.G.: Mine detection experiments using hyperspectral sensors. Int. Soc. Opt. Photonics 5415, 1035–1041 (2004)

    Google Scholar 

  6. Chang, C.I.: An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis. IEEE Trans. Inf. Theory 46(5), 1927–1932 (2000)

    Article  Google Scholar 

  7. Kay, S.M.: Fundamentals of Statistical Signal Processing: Practical Algorithm, vol. 3. Pearson Edducation, Westford (2013)

    Google Scholar 

  8. Harsanyi, J.C., Chang, C.I.: Hyperspectral image classification and dimensionality reduction:an orthogonal subspace projection approach. IEEE Trans. Geosci. Remote Sens. 13(4), 779–785 (1994)

    Article  Google Scholar 

  9. Zou, Z., Shi, Z., Wu, J.: Quadratic constrained energy minimization for hyperspectral target detection. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 4979–4982 (2015)

    Google Scholar 

  10. Zou, Z., Shi, Z.: Hierarchical suppression method for hyperspectral target detection. IEEE Trans. Geosci. Remote Sens. 54(1), 330–342 (2016)

    Article  Google Scholar 

  11. Kraut, S., Scharf, L.L., Mcwhorter, L.T.: Adaptive subspace detectors. IEEE Trans. Signal Process. 49(1), 1–16 (2001)

    Article  Google Scholar 

  12. Ren, H., Du, Q., Chang, C.I., Jensen, J.O.: Comparison between constrained energy minimization based approaches forhyperspectral imagery. In: IEEE Workshop on Advances inTechniques for Analysis of Remotely Sensed Data, pp. 244–248 (2003)

    Google Scholar 

  13. Chang, C.I.: Hyperspectral Imaging: Techniques for Spectral Detection and Classification, 1st edn. Springer, Boston (2003). https://doi.org/10.1007/978-1-4419-9170-6

  14. Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms. Chapman and Hall/CRC, New York (2012)

    Google Scholar 

  15. Freund, Y., Schapire, R., Abe, N.: A short introduction to boosting. J.-Jpn. Soc. Artif. Intell. 14, 771–780 (1999)

    Google Scholar 

  16. Jihao, Y., Yan, W., Yisong, W.: An improved multi-small target detection algorithm in hyperspectral image. Acta Electronica Sinica 38(9), 1975–1978 (2010)

    Google Scholar 

  17. Zhou, Z.H.: Ensemble learning, Encyclopedia of Biometrics, pp. 270–273. Springer, Berlin (2009)

    Google Scholar 

  18. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning, 1st edn. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  19. Clark, R.N., Swayze, G.A., Gallagher, A.J.: The US geological survey, digital spectral library: version 1 (0.2 to 3.0 um); Technical report. Geological Survey (US), Reston (1993)

    Google Scholar 

  20. Chang, Y.C.C., Ren, H., Chang, C.I.: How to design synthetic images to validate and evaluate hyperspectral imaging algorithms. Int. Soc. Opt. Photonic 6966, 69661 (2008)

    Google Scholar 

  21. Solomatine, D.P., Shrestha, D.L.: AdaBoost. RT: a boosting algorithm for regression problems. In: IEEE International Joint Conference on Neural Networks, vol. 2, no. 4, pp. 1163–1168 (2004)

    Google Scholar 

  22. Tuysuzoglu, G., Birant, D.: Enhanced bagging (eBagging): a novel approach for ensemble learning. Int. Arab. J. Inf. Technol 17(4), 515–528 (2020)

    Google Scholar 

  23. Behroozi, M., Boostani, R.: Presenting a new cascade structure for multiclass problems. In: IEEE International Conference on Electronics, pp. 192–195 (2013)

    Google Scholar 

  24. Karimireddy, S.P., Kale, S., Mohri, M.: Scaffold: stochastic controlled averaging for federated learning. In: International Conference on Machine Learning, pp. 5132–5143 (2020)

    Google Scholar 

  25. Wanto, A., Windarto, A.P., Hartama, D.: Use of binary sigmoid function and linear identity in artificial neural networks for forecasting population density. Int. J. Inf. Syst. Technol. (IJISTECH) 1(1), 43–54 (2017)

    Google Scholar 

  26. Dai, Z., Wang, P., Wei, H.: Signal detection based on Sigmoid function in Non-Gaussian noise. J. Electron. Inf. Technol. 41(12), 2945–2950 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Q., Liu, Z. (2022). Constrained Energy Minimization for Hyperspectral Multi-target Detection Based on Ensemble Learning. In: Li, B., et al. Advanced Data Mining and Applications. ADMA 2022. Lecture Notes in Computer Science(), vol 13088. Springer, Cham. https://doi.org/10.1007/978-3-030-95408-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95408-6_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95407-9

  • Online ISBN: 978-3-030-95408-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics