Skip to main content

Multilevel Monte-Carlo for Solving POMDPs Online

  • Conference paper
  • First Online:
Robotics Research (ISRR 2019)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 20))

Included in the following conference series:

Abstract

Planning under partial obervability is essential for autonomous robots. A principled way to address such planning problems is the Partially Observable Markov Decision Process (POMDP). Although solving POMDPs is computationally intractable, substantial advancements have been achieved in developing approximate POMDP solvers in the past two decades. However, computing robust solutions for systems with complex dynamics remains challenging. Most on-line solvers rely on a large number of forward-simulations and standard Monte-Carlo methods to compute the expected outcomes of actions the robot can perform. For systems with complex dynamics, e.g., those with non-linear dynamics that admit no closed form solution, even a single forward simulation can be prohibitively expensive. Of course, this issue exacerbates for problems with long planning horizons. This paper aims to alleviate the above difficulty. To this end, we propose a new on-line POMDP solver, called Multilevel POMDP Planner (MLPP), that combines the commonly known Monte-Carlo-Tree-Search with the concept of Multilevel Monte-Carlo to speed-up our capability in generating approximately optimal solutions for POMDPs with complex dynamics. Experiments on four different problems of POMDP-based torque control, navigation and grasping indicate that MLPP substantially outperforms state-of-the-art POMDP solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agha-Mohammadi, A.A., Chakravorty, S., Amato, N.M.: FIRM: feedback controller-based information-state roadmap-a framework for motion planning under uncertainty. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4284–4291. IEEE (2011)

    Google Scholar 

  2. Anderson, D.F., Higham, D.J.: Multilevel Monte Carlo for continuous time Markov chains, with applications in biochemical kinetics. Multiscale Model. Simul. 10(1), 146–179 (2012)

    Article  MathSciNet  Google Scholar 

  3. Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)

    Article  Google Scholar 

  4. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

    Article  Google Scholar 

  5. Bai, H., Hsu, D.: Unmanned aircraft collision avoidance using continuous-state POMDPs. In: Robotics: Science and Systems VII, vol. 1, pp. 1–8 (2012)

    Google Scholar 

  6. Bai, H., Hsu, D., Lee, W.S.: Integrated perception and planning in the continuous space: a POMDP approach. Int. J. Robot. Res. 33(9), 1288–1302 (2014)

    Article  Google Scholar 

  7. Bierig, C., Chernov, A.: Approximation of probability density functions by the multilevel Monte Carlo maximum entropy method. J. Comput. Phys. 314, 661–681 (2016)

    Article  MathSciNet  Google Scholar 

  8. Giles, M.B.: Multilevel Monte Carlo path simulation. Oper. Res. 56(3), 607–617 (2008)

    Article  MathSciNet  Google Scholar 

  9. Giles, M.B.: Multilevel Monte Carlo methods. Acta Numer. 24, 259–328 (2015)

    Article  MathSciNet  Google Scholar 

  10. He, R., Brunskill, E., Roy, N.: PUMA: planning under uncertainty with macro-actions. In: Proceedings of the National Conference on Artificial Intelligence, vol. 2 (2010)

    Google Scholar 

  11. Heinrich, S.: Multilevel Monte Carlo methods. In: Margenov, S., Waśniewski, J., Yalamov, P. (eds.) Large-Scale Scientific Computing. LNCS, pp. 58–67. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45346-6_5

    Chapter  Google Scholar 

  12. Hoerger, M., Kurniawati, H., Elfes, A.: A software framework for planning under partial observability. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1–9. IEEE (2018)

    Google Scholar 

  13. Hoey, J., Poupart, P.: Solving POMDPs with continuous or large discrete observation spaces. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence, IJCAI 2005, pp. 1332–1338. Morgan Kaufmann Publishers Inc., San Francisco (2005)

    Google Scholar 

  14. Horowitz, M., Burdick, J.: Interactive non-prehensile manipulation for grasping via POMDPs. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 3257–3264. IEEE (2013)

    Google Scholar 

  15. Hsiao, K., Kaelbling, L.P., Lozano-Perez, T.: Grasping POMDPs. In: 2007 IEEE International Conference on Robotics and Automation, pp. 4685–4692. IEEE (2007)

    Google Scholar 

  16. Klimenko, D., Song, J., Kurniawati, H.: TAPIR: a software toolkit for approximating and adapting POMDP solutions online. In: Proceedings of the Australasian Conference on Robotics and Automation (2014)

    Google Scholar 

  17. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS, vol. 4212, pp. 282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842_29

    Chapter  Google Scholar 

  18. Kurniawati, H., Du, Y., Hsu, D., Lee, W.S.: Motion planning under uncertainty for robotic tasks with long time horizons. Int. J. Robot. Res. 30(3), 308–323 (2011)

    Article  Google Scholar 

  19. Kurniawati, H., Hsu, D., Lee, W.S.: SARSOP: efficient point-based POMDP planning by approximating optimally reachable belief spaces. In: Proceedings of the Robotics: Science and Systems (2008)

    Google Scholar 

  20. Kurniawati, H., Yadav, V.: An online POMDP solver for uncertainty planning in dynamic environment. In: Proceedings of the International Symposium on Robotics Research (2013)

    Google Scholar 

  21. Luo, Y., Bai, H., Hsu, D., Lee, W.S.: Importance sampling for online planning under uncertainty. Int. J. Robot. Res. 38, 162–181 (2018). p. 0278364918780322

    Google Scholar 

  22. Owen, A.B.: Monte Carlo Theory, Methods and Examples (2013)

    Google Scholar 

  23. Papadimitriou, C.H., Tsitsiklis, J.N.: The complexity of Markov decision processes. Math. Oper. Res. 12(3), 441–450 (1987)

    Article  MathSciNet  Google Scholar 

  24. Pineau, J., Gordon, G., Thrun, S.: Point-based value iteration: an anytime algorithm for POMDPs (2003)

    Google Scholar 

  25. Rhee, C., Glynn, P.W.: A new approach to unbiased estimation for SDE’s. In: Proceedings of the Winter Simulation Conference, p. 17. Winter Simulation Conference (2012)

    Google Scholar 

  26. Seiler, K.M., Kurniawati, H., Singh, S.P.: An online and approximate solver for POMDPs with continuous action space. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2290–2297. IEEE (2015)

    Google Scholar 

  27. Silver, D., Veness, J.: Monte-Carlo planning in large POMDPs. In: Advances in Neural Information Processing Systems, pp. 2164–2172 (2010)

    Google Scholar 

  28. Smith, R.: Open dynamics engine. http://www.ode.org/

  29. Smith, T., Simmons, R.: Point-based POMDP algorithms: improved analysis and implementation (2005)

    Google Scholar 

  30. Somani, A., Ye, N., Hsu, D., Lee, W.S.: DESPOT: Online POMDP planning with regularization. In: Advances In Neural Information Processing Systems, pp. 1772–1780 (2013)

    Google Scholar 

  31. Sondik, E.J.: The optimal control of partially observable Markov decision processes. Ph.D. thesis, Stanford, California (1971)

    Google Scholar 

  32. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control, vol. 3. Wiley, New York (2006)

    Google Scholar 

  33. Sunberg, Z.N., Kochenderfer, M.J.: Online algorithms for POMDPs with continuous state, action, and observation spaces. In: Twenty-Eighth International Conference on Automated Planning and Scheduling (2018)

    Google Scholar 

  34. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2012)

    MATH  Google Scholar 

  35. Wang, E., Kurniawati, H., Kroese, D.P.: An on-line planner for POMDPs with large discrete action space: a quantile-based approach. In: ICAPS, pp. 273–277. AAAI Press (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Hoerger .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ppt 49 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hoerger, M., Kurniawati, H., Elfes, A. (2022). Multilevel Monte-Carlo for Solving POMDPs Online. In: Asfour, T., Yoshida, E., Park, J., Christensen, H., Khatib, O. (eds) Robotics Research. ISRR 2019. Springer Proceedings in Advanced Robotics, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-95459-8_11

Download citation

Publish with us

Policies and ethics