Skip to main content

Probabilistic Mapping of Tissue Elasticity for Robot-Assisted Medical Ultrasound

  • Conference paper
  • First Online:
Robotics Research (ISRR 2019)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 20))

Included in the following conference series:

Abstract

A novel modality of ultrasound imaging known as elastography has been shown to improve cancer detection for women with dense breast tissue. However, the scanning procedure for this technique is often difficult for a human to perform in a consistent manner and could conceivably benefit from robot assistance. In this work, we present a novel robot-assisted probabilistic elasticity mapping algorithm which uses Gaussian filter techniques to produce elastograms and uncertainty maps. We demonstrate the proposed approach using a 7-DOF robot manipulator on a gelatin phantom designed to imitate the elasticity of human tissue. The results indicate the algorithm is capable of imaging a \({6.5\,\mathrm{\text {m}\text {m}}}\) lesion and reducing map uncertainty in the observable region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Some research reports numbers as high as 90%.

  2. 2.

    A low PPV is synonomous to a high number of false positives.

  3. 3.

    The transducer is limited to 128 lateral samples as opposed to thousands in the axial direction.

References

  1. American Cancer Society: Breast cancer factors and figures 2017–2018 (2017). https://www.cancer.org/. Accessed 16 Feb 2018

  2. Billings, S., Deshmukh, N., Kang, H.J., Taylor, R., Boctor, E.: System for robot-assisted real-time laparoscopic ultrasound elastography. In: Proceedings SPIE 8316 Medical Imaging 2012: Image-Guided Procedures, Robotic Interventions, and Modeling, p. 83161W (2012)

    Google Scholar 

  3. Cabrelli, L.C., Pelissari, P.I.B.G.B., Deana, A.M., Carneiro, A.A.O., Pavan, T.Z.: Stable phantom materials for ultrasound and optical imaging. Phys. Med. Biol. 62(2), 432–447 (2016)

    Article  Google Scholar 

  4. Coffin, C.: Work-related musculoskeletal disorders in sonographers: a review of causes and types of injury and best practices for reducing injury risk. Rep. Med. Imag. 7, 15 (2014)

    Google Scholar 

  5. Cook, R.D., Malkus, D.S., Plesha, M.E., Witt, R.J.: Concepts and Applications of Finite Element Analysis. John Wiley & Sons Inc., New York (2007)

    Google Scholar 

  6. Doyley, M.M., Parker, K.J.: Elastography: general principles and clincial applications. Ultrasound Clin. 1(9), 11 (2014)

    Google Scholar 

  7. Doyley, M.M., Meaney, P.M., Bamber, J.C.: Evaluation of an iterative reconstruction method for quantitative elastography. Phys. Med. Biol. 45, 1521–1540 (2000)

    Article  Google Scholar 

  8. Doyley, M.M., Bamber, J.C., Fuechsel, F., Bush, N.L.: A freehand elastographic imaging approach for clinical breast imaging: system development and performance evaluation. Ultrasound Med. Biol. 27(10), 1347–1357 (2001)

    Article  Google Scholar 

  9. Evans, K., Roll, S., Baker, J.: Work-related musculoskeletal disorders (WRMSD) among registered diagnostic medical sonographers and vascular technologists: a representative sample. J. Diagn. Med. Sonography 25(6), 287–299 (2009)

    Article  Google Scholar 

  10. Giovannini, M., et al.: Endoscopic ultrasound elastography for evaluation of lymph nodes and pancreatic masses: a multicenter study. World J. Gastroenterol. 15(13), 1587–1593 (2009)

    Article  Google Scholar 

  11. Goswami, S., Ahmed, R., Doyley, M.M., McAleavey, S.A.: Nonlinear shear modulus estimation with bi-axial motion registered local strain. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66(8), 1292–1303 (2019)

    Article  Google Scholar 

  12. Hellgren, R., Dickman, P., Leifland, K., Saracco, A., Hall, P., Celebioglu, F.: Comparison of handheld ultrasound and automated breast ultrasound in women recalled after mammography screening. Acta Radiol. 58(5), 515–520 (2017)

    Article  Google Scholar 

  13. Koutsourelakis, P.S.: A novel Bayesian strategy for the identification of spatially varying material properties and model validation: an application to static elastography. Int. J. Numer. Methods Eng. 91(3), 249–268 (2012)

    Article  MathSciNet  Google Scholar 

  14. Mandelson, M.T., et al.: Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers. JNCI J. Nat. Cancer Inst. 92(13), 1081–1087 (2000)

    Article  Google Scholar 

  15. Matrone, G., Savoia, A.S., Caliano, G., Magenes, G.: The delay multiply and sum beamforming algorithm in ultrasound B-mode medical imaging. IEEE Trans. Med. Imag. 34(4), 940–949 (2015)

    Article  Google Scholar 

  16. McAleavey, S.A., Menon, M., Orszulak, J.: Shear-modulus estimation by application of spatially-modulated impulsive acoustic radiation force. Ultrason. Imag. 29(2), 87–104 (2007)

    Article  Google Scholar 

  17. Muir, M., Hrynkow, P., Chase, R., Boyce, D., Mclean, D.: The nature, cause, and extent of occupational musculoskeletal injuries among sonographers: recommendations for treatment and prevention. J. Diagn. Med. Sonography 20(5), 317–325 (2004)

    Article  Google Scholar 

  18. Murphey, S.: Work related musculoskeletal disorders in sonography. J. Diagn. Med. Sonography 33(5), 354–369 (2017)

    Article  Google Scholar 

  19. Napoli, M., Freitas, C., Goswami, S., McAleavey, S., Doyley, M., Howard, T.M.: Hybrid force/velocity control with compliance estimation via strain elastography for robot assisted ultrasound screening. In: 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (2018)

    Google Scholar 

  20. Patlan-Rosales, P.A.: A robotic control framework for quantitative ultrasound elastography. Ph.D. thesis, Université Rennes (2018)

    Google Scholar 

  21. Patlan-Rosales, P.A., Krupa, A.: A general framework for automatic robotic palpation. In: Workshop on Medical Imaging Robotics, IROS 2017 (2017)

    Google Scholar 

  22. Rifai, K., et al.: Clinical feasibility of liver elastography by acoustic radiation force impulse imaging (ARFI). Dig. Liver Dis. 43(6), 491–497 (2011)

    Article  Google Scholar 

  23. Risholm, P., Samset, E., Wells, W.: Bayesian estimation of deformation and elastic parameters in non-rigid registration. In: Fischer, B., Dawant, B.M., Lorenz, C. (eds.) WBIR 2010. LNCS, vol. 6204, pp. 104–115. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14366-3_10

    Chapter  Google Scholar 

  24. Risholm, P., Ross, J., Washko, G.R., Wells, W.M.: Probabilistic elastography: estimating lung elasticity. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 699–710. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22092-0_57

    Chapter  Google Scholar 

  25. Schneider, C., Baghani, A., Rohling, R., Salcudean, S.: Remote ultrasound palpation for robotic interventions using absolute elastography. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 42–49. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33415-3_6

    Chapter  Google Scholar 

  26. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics (Intelligent Robotics and Autonomous Agents). The MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  27. Zhi, H., Ou, B., Luo, B.M., Feng, X., Wen, Y.L., Yang, H.Y.: Comparison of ultrasound elastography, mammography, and sonography in the diagnosis of solid breast lesions. J. Ultrasound Med. 26(6), 807–815 (2007)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Office of the Assistant Secretary of Defense for Health Affairs through the Breast Cancer Research Program under Award No. W81XWH-17-1-0021 and W81XWH-17-1-0022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Napoli .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ppt 321 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Napoli, M.E., Goswami, S., McAleavey, S.A., Doyley, M.M., Howard, T.M. (2022). Probabilistic Mapping of Tissue Elasticity for Robot-Assisted Medical Ultrasound. In: Asfour, T., Yoshida, E., Park, J., Christensen, H., Khatib, O. (eds) Robotics Research. ISRR 2019. Springer Proceedings in Advanced Robotics, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-95459-8_43

Download citation

Publish with us

Policies and ethics