Skip to main content

Combining Coarse and Fine Physics for Manipulation Using Parallel-in-Time Integration

  • Conference paper
  • First Online:
Robotics Research (ISRR 2019)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 20))

Included in the following conference series:

  • 1996 Accesses

Abstract

We present a method for fast and accurate physics-based predictions during non-prehensile manipulation planning and control. Given an initial state and a sequence of controls, the problem of predicting the resulting sequence of states is a key component of a variety of model-based planning and control algorithms. We propose combining a coarse (i.e. computationally cheap but not very accurate) predictive physics model, with a fine (i.e. computationally expensive but accurate) predictive physics model, to generate a hybrid model that is at the required speed and accuracy for a given manipulation task. Our approach is based on the Parareal algorithm, a parallel-in-time integration method used for computing numerical solutions for general systems of ordinary differential equations. We adapt Parareal to combine a coarse pushing model with an off-the-shelf physics engine to deliver physics-based predictions that are as accurate as the physics engine but run in substantially less wall-clock time, thanks to parallelization across time. We use these physics-based predictions in a model-predictive-control framework based on trajectory optimization, to plan pushing actions that avoid an obstacle and reach a goal location. We show that with hybrid physics models, we can achieve the same success rates as the planner that uses the off-the-shelf physics engine directly, but significantly faster. We present experiments in simulation and on a real robotic setup. Videos are available here: https://youtu.be/5e9oTeu4JOU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We use Mujoco since it is recently the most widely used physics-engine for model-based planning [1, 7, 26, 32].

  2. 2.

    We change the pusher’s position along the direction perpendicular to the direction of motion. We sample uniformly within the edges of the slider (rectangle).

References

  1. Agboh, W.C., Dogar, M.R.: Pushing fast and slow: task-adaptive planning for non-prehensile manipulation under uncertainty. In: WAFR (2018)

    Google Scholar 

  2. Agboh, W.C., Dogar, M.R.: Real-time online re-planning for grasping under clutter and uncertainty. In: IEEE-RAS Humanoids (2018)

    Google Scholar 

  3. Agrawal, P., Nair, A.V., Abbeel, P., Malik, J., Levine, S.: Learning to poke by poking: experiential learning of intuitive physics. In: NeurIPS (2016)

    Google Scholar 

  4. Ajay, A., et al.: Augmenting physical simulators with stochastic neural networks: Case study of planar pushing and bouncing. In: IROS (2018)

    Google Scholar 

  5. Arruda, E., Mathew, M.J., Kopicki, M., Mistry, M., Azad, M., Wyatt, J.L.: Uncertainty averse pushing with model predictive path integral control. In: Humanoids (2017)

    Google Scholar 

  6. Bauza, M., Rodriguez, A.: A probabilistic data-driven model for planar pushing. In: ICRA (2017)

    Google Scholar 

  7. Ebert, F., Dasari, S., Lee, A.X., Levine, S., Finn, C.: Robustness via retrying: closed-loop robotic manipulation with self-supervised learning. In: CoRL (2018)

    Google Scholar 

  8. Erez, T., Tassa, Y., Todorov, E.: Simulation tools for model-based robotics: comparison of Bullet, Havok, MuJoCo, ODE and PhysX. In: ICRA (2015)

    Google Scholar 

  9. Fan, T., Schultz, J., Murphey, T.: Efficient computation of higher-order variational integrators in robotic simulation and trajectory optimization. In: WAFR (2018)

    Google Scholar 

  10. Finn, C., Levine, S.: Deep visual foresight for planning robot motion. In: ICRA (2017)

    Google Scholar 

  11. Finn, C., Goodfellow, I., Levine, S.: Unsupervised learning for physical interaction through video prediction. In: NeurIPS (2016)

    Google Scholar 

  12. Giftthaler, M., Neunert, M., Stäuble, M., Buchli, J., Diehl, M.: A family of iterative gauss-newton shooting methods for nonlinear optimal control. In: IROS (2018)

    Google Scholar 

  13. Goyal, S., Ruina, A., Papadopoulos, J.: Planar sliding with dry friction part 1. Limit surface and moment function. Wear 143(2), 307–330 (1991)

    Article  Google Scholar 

  14. Haustein, J.A., King, J., Srinivasa, S.S., Asfour, T.: Kinodynamic randomized rearrangement planning via dynamic transitions between statically stable states. In: ICRA (2015)

    Google Scholar 

  15. Hogan, F.R., Rodriguez, A.: Feedback control of the pusher-slider system: a story of hybrid and underactuated contact dynamics. In: WAFR (2016)

    Google Scholar 

  16. Johnson, A.M., King, J., Srinivasa, S.: Convergent planning. In: RA-L (2016)

    Google Scholar 

  17. Kalakrishnan, M., Chitta, S., Theodorou, S., Pastor, P., Schaal, S.: Stomp: stochastic trajectory optimization for motion planning. In: ICRA (2011)

    Google Scholar 

  18. Kloss, A., Schaal, S., Bohg, J.: Combining learned and analytical models for predicting action effects. In: IJRR (2020)

    Google Scholar 

  19. Kopicki, M., Zurek, S., Stolkin, R., Moerwald, T., Wyatt, J.L.: Learning modular and transferable forward models of the motions of push manipulated objects. Auton. Robot. 41, 1061–1082 (2017). https://doi.org/10.1007/s10514-016-9571-3

    Article  Google Scholar 

  20. Li, W., Todorov, E.: Iterative linear quadratic regulator design for nonlinear biological movement systems. In: ICINCO (2004)

    Google Scholar 

  21. Lions, J.-L., Maday, Y., Turinici, G.: Résolution d’edp par un schéma en temp pararéel. Comptes Rendus de l’Académie des Sciences - Series I - Mathematics, 332(7), 661–668 (2001) ISSN 0764-4442

    Google Scholar 

  22. Lynch, K.M., Maekawa, H., Tanie, K.: Manipulation and active sensing by pushing using tactile feedback. In: IROS (1992)

    Google Scholar 

  23. Maday, Y., Turinici, G.: Parallel in time algorithms for quantum control: parareal time discretization scheme. Int. J. Quantum Chem. 93(3), 223–228 (2003)

    Article  Google Scholar 

  24. Martin, K.: Parallel multiple shooting for the solution of initial value problems. Parallel Comput. 20(3), 275–295 (1994)

    Article  MathSciNet  Google Scholar 

  25. Mason, M.: Mechanics and planning of manipulator pushing operations. IJRR 5(3), 53–71 (1986)

    Google Scholar 

  26. Matas, J., James, S., Davison, A.J.: Sim-to-real reinforcement learning for deformable object manipulation. In: CORL (2018)

    Google Scholar 

  27. Meriçli, T., Veloso, M., Levent Akın, H.: Push-manipulation of complex passive mobile objects using experimentally acquired motion models. Auton. Robot. 38, 317–329 (2015). https://doi.org/10.1007/s10514-014-9414-z

    Article  Google Scholar 

  28. Minion, M.: A hybrid parareal spectral deferred corrections method. Commun. Appl. Math. Comput. Sci. 5(2), 265–301 (2010)

    Article  MathSciNet  Google Scholar 

  29. Neunert, M., et al.: Whole-body nonlinear model predictive control through contacts for quadrupeds. IEEE RA-L 3(3), 1458–1465 (2018)

    Google Scholar 

  30. Pan, Z., Manocha, D.: Time integrating articulated body dynamics using position-based collocation method. In: WAFR (2018)

    Google Scholar 

  31. Plancher, B., Kuindersma, S.: A performance analysis of parallel differential dynamic programming on a GPU. In: WAFR (2018)

    Google Scholar 

  32. Rajeswaran, A., et al.: Learning complex dexterous manipulation with deep reinforcement learning and demonstrations. In: RSS (2018)

    Google Scholar 

  33. Ruiz-Ugalde, F., Cheng, G., Beetz, M.: Fast adaptation for effect-aware pushing. In: Humanoids (2011)

    Google Scholar 

  34. Ruprecht, D.: Shared memory pipelined parareal. In: Rivera, F.F., et al. (eds.) Euro-Par 2017. LNCS, vol. 10417, pp. 669–681. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64203-1_48

  35. Tassa, Y., Erez, T., Todorov, E.: Synthesis and stabilization of complex behaviors through online trajectory optimization. In: IROS (2012)

    Google Scholar 

  36. Todorov, E., Erez, T., Tassa, Y.: Mujoco: a physics engine for model-based control. In: IROS (2012)

    Google Scholar 

  37. Trindade, J.M.F., Pereira, J.C.F.: Parallel-in-time simulation of two-dimensional, unsteady, incompressible laminar flows. Numer. Heat Transfer Part B Fundam. 50(1), 25–40 (2006)

    Article  Google Scholar 

  38. Williams, G., Aldrich, A., Theodorou, E.: Model predictive path integral control using covariance variable importance sampling. CoRR (2015)

    Google Scholar 

  39. Yu, K.T., Bauza, M., Fazeli, N., Rodriguez, A.: More than a million ways to be pushed. a high-fidelity experimental dataset of planar pushing. In: IROS (2016)

    Google Scholar 

  40. Zhou, J., Mason, M.T., Paolini, R., Bagnell, D.: A convex polynomial model for planar sliding mechanics: theory, application, and experimental validation. Int. J. Robot. Res. 37, 249–265 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded from the European Unions’s Horizon 2020 programme under the Marie Sklodowska Curie grant No. 746143, and from the UK EPSRC under grants EP/P019560/1, EP/R031193/1, and studentship 1879668.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wisdom C. Agboh .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 4212 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agboh, W.C., Ruprecht, D., Dogar, M.R. (2022). Combining Coarse and Fine Physics for Manipulation Using Parallel-in-Time Integration. In: Asfour, T., Yoshida, E., Park, J., Christensen, H., Khatib, O. (eds) Robotics Research. ISRR 2019. Springer Proceedings in Advanced Robotics, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-95459-8_44

Download citation

Publish with us

Policies and ethics