Skip to main content

REACH: Reducing False Negatives in Robot Grasp Planning with a Robust Efficient Area Contact Hypothesis Model

  • Conference paper
  • First Online:
Robotics Research (ISRR 2019)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 20))

Included in the following conference series:

Abstract

Although point contact models are ubiquitous for robot grasp planning, they do not model the range of wrenches that finite-area soft contacts provide. This approximation leads to many false negatives. To reduce these, we propose REACH, a Robust Efficient Area Contact Hypothesis model. We consider its potential benefits and investigate two potential drawbacks: increased computational complexity and increased false positives. The REACH model computes the contact profile using constructive solid geometry intersection and barycentric integration and estimates the contact’s ability to resist external wrenches (e.g., gravity) under perturbations in object pose and material properties. We evaluate the performance of REACH with 2,625 physical grasps of 21 diverse objects with an ABB YuMi robot. We compare performance of a soft point contact model, an elliptical area contact model, and a rigid-body dynamic simulation model using NVIDIA Flex. The REACH model reduces false negatives by 17% compared to the point contact model, achieving 72% average recall. The REACH model also compares favorably to full dynamic simulation in Flex and is two orders of magnitude faster, with 50 ms average computation time. Experimental data and supplementary material are available at https://sites.google.com/berkeley.edu/reach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barbagli, F., Frisoli, A., Salisbury, K., Bergamasco, M.: Simulating human fingers: a soft finger proxy model and algorithm. In: Proceedings of the IEEE International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (2004)

    Google Scholar 

  2. Bicchi, A., Kumar, V.: Robotic grasping and contact: a review. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2000)

    Google Scholar 

  3. Bohg, J., Morales, A., Asfour, T., Kragic, D.: Data-driven grasp synthesis - a survey. IEEE Trans. Robot. 30(2), 289–309 (2014)

    Article  Google Scholar 

  4. Charusta, K., Krug, R., Dimitrov, D., Iliev, B.: Independent contact regions based on a patch contact model. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2012)

    Google Scholar 

  5. Ciocarlie, M., Lackner, C., Allen, P.: Soft finger model with adaptive contact geometry for grasping and manipulation tasks. In: Proceedings of the IEEE Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (2007)

    Google Scholar 

  6. Ciocarlie, M., Miller, A., Allen, P.: Grasp analysis using deformable fingers. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2005)

    Google Scholar 

  7. Ciocarlie, M., Dang, H., Lukos, J., Santello, M., Allen, P.: Functional analysis of finger contact locations during grasping. In: Proceedings of the IEEE Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. IEEE (2009)

    Google Scholar 

  8. Dollar, A.M., Howe, R.D.: The highly adaptive SDM hand: design and performance evaluation. Int. J. Robot. Res. 29(5), 585–597 (2010)

    Article  Google Scholar 

  9. Ghafoor, A., Dai, J.S., Duffy, J.: Stiffness modeling of the soft-finger contact in robotic grasping. J. Mech. Des. 126(4), 646–656 (2004)

    Article  Google Scholar 

  10. Goldberg, K., Mirtich, B.V., Zhuang, Y., Craig, J., Carlisle, B.R., Canny, J.: Part pose statistics: estimators and experiments. IEEE Trans. Robot. Autom. 15(5), 849–857 (1999)

    Article  Google Scholar 

  11. Goyal, S., Ruina, A., Papadopoulos, J.: Planar sliding with dry friction part 1. Limit surface and moment function. Wear 143(2), 307–330 (1991)

    Article  Google Scholar 

  12. Guo, M., et al.: Design of parallel-jaw gripper tip surfaces for robust grasping. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2017)

    Google Scholar 

  13. Rudolf Hertz, H.: Uber die beruhrung fester elastischer korper und uber die harte. Verhandlung des Vereins zur Beforderung des GewerbefleiBes, Berlin (1882)

    Google Scholar 

  14. Howe, R.D., Kao, I., Cutkosky, M.R.: The sliding of robot fingers under combined torsion and shear loading. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (1988)

    Google Scholar 

  15. Inoue, T., Hirai, S.: Elastic model of deformable fingertip for soft-fingered manipulation. IEEE Trans. Robot. 22(6), 1273–1279 (2006)

    Article  Google Scholar 

  16. Johns, E., Leutenegger, S., Davison, A.J.: Deep learning a grasp function for grasping under gripper pose uncertainty. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2016)

    Google Scholar 

  17. Kao, I., Yang, F.: Stiffness and contact mechanics for soft fingers in grasping and manipulation. IEEE Trans. Robot. Autom. 20(1), 132–135 (2004)

    Article  Google Scholar 

  18. Kao, I., Lynch, K.M., Burdick, J.W.: Contact modeling and manipulation. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 931–954. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32552-1_37

    Chapter  Google Scholar 

  19. Krug, R., Bekiroglu, Y., Roa, M.A.: Grasp quality evaluation done right: how assumed contact force bounds affect wrench-based quality metrics. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2017)

    Google Scholar 

  20. Lenz, I., Lee, H., Saxena, A.: Deep learning for detecting robotic grasps. Int. J. Robot. Res. 34(4–5), 705–724 (2015)

    Article  Google Scholar 

  21. Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., Quillen, D.: Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. Int. J. Robot. Res. 37(4–5), 421–436 (2018)

    Article  Google Scholar 

  22. Li, Y., Kao, I.: A review of modeling of soft-contact fingers and stiffness control for dextrous manipulation in robotics. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2001)

    Google Scholar 

  23. Macklin, M., Erleben, K., Müller, M., Chentanez, N., Jeschke, S., Makoviychuk, V.: Non-smooth newton methods for deformable multi-body dynamics. ACM Trans. Graph. 38(5), 1–20 (2019)

    Article  Google Scholar 

  24. Mahler, J., et al.: Dex-Net 1.0: a cloud-based network of 3d objects for robust grasp planning using a multi-armed bandit model with correlated rewards. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2016)

    Google Scholar 

  25. Mahler, J., et al.: Dex-Net 2.0: deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics. In: Proceedings of the Robotics: Science and Systems (RSS) (2017)

    Google Scholar 

  26. Mahler, J., Matl, M., Liu, X., Li, A., Gealy, D., Goldberg, K.: Dex-Net 3.0: computing robust vacuum suction grasp targets in point clouds using a new analytic model and deep learning. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2018)

    Google Scholar 

  27. Mahler, J., et al.: Learning ambidextrous robot grasping policies. Sci. Robot. 4(26), eaau4984 (2019)

    Article  Google Scholar 

  28. Marhefka, D.W., Orin, D.E.: A compliant contact model with nonlinear damping for simulation of robotic systems. IEEE Trans. Syst. Man Cybernet. A Syst. Hum. 29(6), 566–572 (1999)

    Article  Google Scholar 

  29. Mason, M.T., Salisbury Jr., J.K.: Robot Hands and the Mechanics of Manipulation. MIT Press, Cambridge (1985)

    Google Scholar 

  30. Mellado, N., Aiger, D., Mitra, N.J.: Super 4PCS fast global pointcloud registration via smart indexing. In: Computer Graphics Forum, vol. 33. Wiley Online Library (2014)

    Google Scholar 

  31. Murray, R.M.: A Mathematical Introduction to Robotic Manipulation. CRC Press, New York (2017)

    Book  Google Scholar 

  32. Pinto, L., Gupta, A.: Supersizing self-supervision: learning to grasp from 50 k tries and 700 robot hours. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2016)

    Google Scholar 

  33. Pouliquen, M., Duriez, C., Andriot, C., Bernard, A., Chodorge, L., Gosselin, F.: Real-time finite element finger pinch grasp simulation. In: Proceedings of the IEEE Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (2005)

    Google Scholar 

  34. Rimon, E., Burdick, J.: The Mechanics of Robot Grasping. Cambridge University Press, Cambridge (2019)

    Book  Google Scholar 

  35. Roa, M.A., Suárez, R.: Grasp quality measures: review and performance. Autonom. Robot. 38(1), 65–88 (2015)

    Article  Google Scholar 

  36. Saito, T., Rehmsmeier, M.: The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PloS One 10(3), e0118432 (2015)

    Article  Google Scholar 

  37. Salisbury, J.K., Roth, B.: Kinematic and force analysis of articulated mechanical hands. J. Mech. Transm. Autom. Des. 105(1), 35–41 (1983)

    Article  Google Scholar 

  38. Satish, V., Mahler, J., Goldberg, K.: On-policy dataset synthesis for learning robot grasping policies using fully convolutional deep networks. IEEE Robot. Autom. Lett. 4(2), 1357–1364 (2019)

    Article  Google Scholar 

  39. Sinha, P.R., Abel, J.M.: A contact stress model for multifingered grasps of rough objects. IEEE Trans. Robot. Autom. 8(1), 7–22 (1992)

    Article  Google Scholar 

  40. Tsuji, T., Uto, S., Harada, K., Kurazume, R., Hasegawa, T., Morooka, K.: Grasp planning for constricted parts of objects approximated with quadric surfaces. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2014)

    Google Scholar 

  41. Weiss Robotics Tactile Sensor. https://www.weiss-robotics.com/en/produkte/unkategorisiert/wts-en

  42. Weisstein, E.W.: Barycentric Coordinates. MathWorld – A Wolfram Web Resource (2003)

    Google Scholar 

  43. Weisz, J., Allen, P.K.: Pose error robust grasping from contact wrench space metrics. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2012)

    Google Scholar 

  44. Xu, J., Alt, N., Zhang, Z., Steinbach, E.G.: Grasping posture estimation for a two-finger parallel gripper with soft material jaws using a curved contact area friction model. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2017)

    Google Scholar 

  45. Xydas, N., Kao, I.: Modeling of contact mechanics and friction limit surfaces for soft fingers in robotics, with experimental results. Int. J. Robot. Res. 18(9), 941–950 (1999)

    Article  Google Scholar 

  46. Xydas, N., Bhagavat, M., Kao, I.: Study of soft-finger contact mechanics using finite elements analysis and experiments. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2000)

    Google Scholar 

  47. Zeng, A., et al.: Robotic pick-and-place of novel objects in clutter with multi-affordance grasping and cross-domain image matching. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2018)

    Google Scholar 

Download references

Acknowledgments

This research was performed at the AUTOLAB at UC Berkeley in affiliation with the Berkeley AI Research (BAIR) Lab, Berkeley Deep Drive (BDD), the Real-Time Intelligent Secure Execution (RISE) Lab, and the CITRIS “People and Robots” (CPAR) Initiative. The authors were supported in part by the Scalable Collaborative Human-Robot Learning (SCHooL) Project, NSF National Robotics Initiative Award 1734633 and by donations from Google, Siemens, Amazon Robotics, Toyota Research Institute, Autodesk, ABB, Samsung, Knapp, Loccioni, Honda, Intel, Comcast, Cisco, Hewlett-Packard and by equipment grants from PhotoNeo, Weiss Robotics, and NVIDIA. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Sponsors. We thank our colleagues who provided helpful feedback, code, and suggestions, especially Jeff Ichnowski, Ashwin Balakrishna, Daniel Seita, Ajay Tanwani, and Sandra Skaff.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Danielczuk .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ppt 145 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Danielczuk, M., Xu, J., Mahler, J., Matl, M., Chentanez, N., Goldberg, K. (2022). REACH: Reducing False Negatives in Robot Grasp Planning with a Robust Efficient Area Contact Hypothesis Model. In: Asfour, T., Yoshida, E., Park, J., Christensen, H., Khatib, O. (eds) Robotics Research. ISRR 2019. Springer Proceedings in Advanced Robotics, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-95459-8_46

Download citation

Publish with us

Policies and ethics