Abstract
Although point contact models are ubiquitous for robot grasp planning, they do not model the range of wrenches that finite-area soft contacts provide. This approximation leads to many false negatives. To reduce these, we propose REACH, a Robust Efficient Area Contact Hypothesis model. We consider its potential benefits and investigate two potential drawbacks: increased computational complexity and increased false positives. The REACH model computes the contact profile using constructive solid geometry intersection and barycentric integration and estimates the contact’s ability to resist external wrenches (e.g., gravity) under perturbations in object pose and material properties. We evaluate the performance of REACH with 2,625 physical grasps of 21 diverse objects with an ABB YuMi robot. We compare performance of a soft point contact model, an elliptical area contact model, and a rigid-body dynamic simulation model using NVIDIA Flex. The REACH model reduces false negatives by 17% compared to the point contact model, achieving 72% average recall. The REACH model also compares favorably to full dynamic simulation in Flex and is two orders of magnitude faster, with 50 ms average computation time. Experimental data and supplementary material are available at https://sites.google.com/berkeley.edu/reach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barbagli, F., Frisoli, A., Salisbury, K., Bergamasco, M.: Simulating human fingers: a soft finger proxy model and algorithm. In: Proceedings of the IEEE International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (2004)
Bicchi, A., Kumar, V.: Robotic grasping and contact: a review. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2000)
Bohg, J., Morales, A., Asfour, T., Kragic, D.: Data-driven grasp synthesis - a survey. IEEE Trans. Robot. 30(2), 289–309 (2014)
Charusta, K., Krug, R., Dimitrov, D., Iliev, B.: Independent contact regions based on a patch contact model. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2012)
Ciocarlie, M., Lackner, C., Allen, P.: Soft finger model with adaptive contact geometry for grasping and manipulation tasks. In: Proceedings of the IEEE Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (2007)
Ciocarlie, M., Miller, A., Allen, P.: Grasp analysis using deformable fingers. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2005)
Ciocarlie, M., Dang, H., Lukos, J., Santello, M., Allen, P.: Functional analysis of finger contact locations during grasping. In: Proceedings of the IEEE Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. IEEE (2009)
Dollar, A.M., Howe, R.D.: The highly adaptive SDM hand: design and performance evaluation. Int. J. Robot. Res. 29(5), 585–597 (2010)
Ghafoor, A., Dai, J.S., Duffy, J.: Stiffness modeling of the soft-finger contact in robotic grasping. J. Mech. Des. 126(4), 646–656 (2004)
Goldberg, K., Mirtich, B.V., Zhuang, Y., Craig, J., Carlisle, B.R., Canny, J.: Part pose statistics: estimators and experiments. IEEE Trans. Robot. Autom. 15(5), 849–857 (1999)
Goyal, S., Ruina, A., Papadopoulos, J.: Planar sliding with dry friction part 1. Limit surface and moment function. Wear 143(2), 307–330 (1991)
Guo, M., et al.: Design of parallel-jaw gripper tip surfaces for robust grasping. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2017)
Rudolf Hertz, H.: Uber die beruhrung fester elastischer korper und uber die harte. Verhandlung des Vereins zur Beforderung des GewerbefleiBes, Berlin (1882)
Howe, R.D., Kao, I., Cutkosky, M.R.: The sliding of robot fingers under combined torsion and shear loading. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (1988)
Inoue, T., Hirai, S.: Elastic model of deformable fingertip for soft-fingered manipulation. IEEE Trans. Robot. 22(6), 1273–1279 (2006)
Johns, E., Leutenegger, S., Davison, A.J.: Deep learning a grasp function for grasping under gripper pose uncertainty. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2016)
Kao, I., Yang, F.: Stiffness and contact mechanics for soft fingers in grasping and manipulation. IEEE Trans. Robot. Autom. 20(1), 132–135 (2004)
Kao, I., Lynch, K.M., Burdick, J.W.: Contact modeling and manipulation. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 931–954. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32552-1_37
Krug, R., Bekiroglu, Y., Roa, M.A.: Grasp quality evaluation done right: how assumed contact force bounds affect wrench-based quality metrics. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2017)
Lenz, I., Lee, H., Saxena, A.: Deep learning for detecting robotic grasps. Int. J. Robot. Res. 34(4–5), 705–724 (2015)
Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., Quillen, D.: Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. Int. J. Robot. Res. 37(4–5), 421–436 (2018)
Li, Y., Kao, I.: A review of modeling of soft-contact fingers and stiffness control for dextrous manipulation in robotics. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2001)
Macklin, M., Erleben, K., Müller, M., Chentanez, N., Jeschke, S., Makoviychuk, V.: Non-smooth newton methods for deformable multi-body dynamics. ACM Trans. Graph. 38(5), 1–20 (2019)
Mahler, J., et al.: Dex-Net 1.0: a cloud-based network of 3d objects for robust grasp planning using a multi-armed bandit model with correlated rewards. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2016)
Mahler, J., et al.: Dex-Net 2.0: deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics. In: Proceedings of the Robotics: Science and Systems (RSS) (2017)
Mahler, J., Matl, M., Liu, X., Li, A., Gealy, D., Goldberg, K.: Dex-Net 3.0: computing robust vacuum suction grasp targets in point clouds using a new analytic model and deep learning. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2018)
Mahler, J., et al.: Learning ambidextrous robot grasping policies. Sci. Robot. 4(26), eaau4984 (2019)
Marhefka, D.W., Orin, D.E.: A compliant contact model with nonlinear damping for simulation of robotic systems. IEEE Trans. Syst. Man Cybernet. A Syst. Hum. 29(6), 566–572 (1999)
Mason, M.T., Salisbury Jr., J.K.: Robot Hands and the Mechanics of Manipulation. MIT Press, Cambridge (1985)
Mellado, N., Aiger, D., Mitra, N.J.: Super 4PCS fast global pointcloud registration via smart indexing. In: Computer Graphics Forum, vol. 33. Wiley Online Library (2014)
Murray, R.M.: A Mathematical Introduction to Robotic Manipulation. CRC Press, New York (2017)
Pinto, L., Gupta, A.: Supersizing self-supervision: learning to grasp from 50 k tries and 700 robot hours. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2016)
Pouliquen, M., Duriez, C., Andriot, C., Bernard, A., Chodorge, L., Gosselin, F.: Real-time finite element finger pinch grasp simulation. In: Proceedings of the IEEE Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (2005)
Rimon, E., Burdick, J.: The Mechanics of Robot Grasping. Cambridge University Press, Cambridge (2019)
Roa, M.A., Suárez, R.: Grasp quality measures: review and performance. Autonom. Robot. 38(1), 65–88 (2015)
Saito, T., Rehmsmeier, M.: The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PloS One 10(3), e0118432 (2015)
Salisbury, J.K., Roth, B.: Kinematic and force analysis of articulated mechanical hands. J. Mech. Transm. Autom. Des. 105(1), 35–41 (1983)
Satish, V., Mahler, J., Goldberg, K.: On-policy dataset synthesis for learning robot grasping policies using fully convolutional deep networks. IEEE Robot. Autom. Lett. 4(2), 1357–1364 (2019)
Sinha, P.R., Abel, J.M.: A contact stress model for multifingered grasps of rough objects. IEEE Trans. Robot. Autom. 8(1), 7–22 (1992)
Tsuji, T., Uto, S., Harada, K., Kurazume, R., Hasegawa, T., Morooka, K.: Grasp planning for constricted parts of objects approximated with quadric surfaces. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2014)
Weiss Robotics Tactile Sensor. https://www.weiss-robotics.com/en/produkte/unkategorisiert/wts-en
Weisstein, E.W.: Barycentric Coordinates. MathWorld – A Wolfram Web Resource (2003)
Weisz, J., Allen, P.K.: Pose error robust grasping from contact wrench space metrics. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2012)
Xu, J., Alt, N., Zhang, Z., Steinbach, E.G.: Grasping posture estimation for a two-finger parallel gripper with soft material jaws using a curved contact area friction model. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2017)
Xydas, N., Kao, I.: Modeling of contact mechanics and friction limit surfaces for soft fingers in robotics, with experimental results. Int. J. Robot. Res. 18(9), 941–950 (1999)
Xydas, N., Bhagavat, M., Kao, I.: Study of soft-finger contact mechanics using finite elements analysis and experiments. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2000)
Zeng, A., et al.: Robotic pick-and-place of novel objects in clutter with multi-affordance grasping and cross-domain image matching. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2018)
Acknowledgments
This research was performed at the AUTOLAB at UC Berkeley in affiliation with the Berkeley AI Research (BAIR) Lab, Berkeley Deep Drive (BDD), the Real-Time Intelligent Secure Execution (RISE) Lab, and the CITRIS “People and Robots” (CPAR) Initiative. The authors were supported in part by the Scalable Collaborative Human-Robot Learning (SCHooL) Project, NSF National Robotics Initiative Award 1734633 and by donations from Google, Siemens, Amazon Robotics, Toyota Research Institute, Autodesk, ABB, Samsung, Knapp, Loccioni, Honda, Intel, Comcast, Cisco, Hewlett-Packard and by equipment grants from PhotoNeo, Weiss Robotics, and NVIDIA. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Sponsors. We thank our colleagues who provided helpful feedback, code, and suggestions, especially Jeff Ichnowski, Ashwin Balakrishna, Daniel Seita, Ajay Tanwani, and Sandra Skaff.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Danielczuk, M., Xu, J., Mahler, J., Matl, M., Chentanez, N., Goldberg, K. (2022). REACH: Reducing False Negatives in Robot Grasp Planning with a Robust Efficient Area Contact Hypothesis Model. In: Asfour, T., Yoshida, E., Park, J., Christensen, H., Khatib, O. (eds) Robotics Research. ISRR 2019. Springer Proceedings in Advanced Robotics, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-95459-8_46
Download citation
DOI: https://doi.org/10.1007/978-3-030-95459-8_46
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-95458-1
Online ISBN: 978-3-030-95459-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)