Skip to main content

Small Geodetic Datasets and Deep Networks: Attention-Based Residual LSTM Autoencoder Stacking for Geodetic Time Series

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2021)

Abstract

In case only a limited amount of data is available, deep learning models often do not generalize well. We propose a novel deep learning architecture to deal with this problem and achieve high prediction accuracy. To this end, we combine four different concepts: greedy layer-wise pretraining, attention via performers, residual connections, and LSTM autoencoder stacking. We present the application of the method in geodetic data science, for the prediction of length-of-day and GNSS station position time series, two of the most important problems in the field of geodesy. In these particular cases, where we have only relatively short time series, we achieve state-of-the-art performance compared to other statistical and machine learning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://geodesy.unr.edu/.

References

  1. Altamimi, Z., Rebischung, P., Métivier, L., Collilieux, X.: ITRF2014: a new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geophys. Res. Solid Earth 121(8), 6109–6131 (2016)

    Article  Google Scholar 

  2. Amiri-Simkooei, A.A., Tiberius, C.C.J.M., Teunissen, P.J.G.: Assessment of noise in GPS coordinate time series: methodology and results. J. Geophys. Res. Solid Earth 117(B7) (2007). https://doi.org/10.1029/2006JB004913

  3. Amiri-Simkooei, A.R.: Noise in multivariate GPS position time-series. J. Geodesy 83, 175–187 (2009)

    Article  Google Scholar 

  4. Blewitt, G., Hammond, W.C., Kreemer, C.: Harnessing the GPS data explosion for interdisciplinary science. Eos, Science News by AGU (2018). https://doi.org/10.1029/2018EO104623

  5. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv:1409.0473 (2014)

  6. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada (2006)

    Google Scholar 

  7. Bizouard, C., Lambert, S., Gattano, C., Becker, O., Richard, J.-Y.: The IERS EOP 14C04 solution for Earth orientation parameters consistent with ITRF 2014. J. Geodesy 93(5), 621–633 (2018). https://doi.org/10.1007/s00190-018-1186-3

    Article  Google Scholar 

  8. Choromanski, K., et al.: Rethinking attention with performers. In: The Ninth International Conference on Learning Representations, Virtual (2021)

    Google Scholar 

  9. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, Florida, pp. 248–255. IEEE (2009)

    Google Scholar 

  10. Dobslaw, H., Dill, R.: Predicting earth orientation changes from global forecasts of atmosphere-hydrosphere dynamics. Adv. Space Res. 61(4), 1047–1054 (2018)

    Article  Google Scholar 

  11. Earth Orientation Center. https://hpiers.obspm.fr/eop-pc

  12. Egger, J., Weickmann, K., Honika, K.-P.: Angular momentum in the global atmospheric circulation. Rev. Geophys. 45(4007) (2007). https://doi.org/10.1029/2006RG000213

  13. GFZ. ftp://ig2-dmz.gfz-potsdam.de/EAM/

  14. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2017)

    MATH  Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 770–778. IEEE (2016)

    Google Scholar 

  16. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  17. International Earth Rotation and Reference Systems Service. https://www.iers.org/IERS/EN/DataProducts/EarthOrientationData/eop.html

  18. Jiang, P., Chen, C., Liu, X.: Time series prediction for evolutions of complex systems: a deep learning approach. In: 2016 IEEE International Conference on Control and Robotics Engineering, Singapore (2016)

    Google Scholar 

  19. Kiani Shahvandi, M., Soja, B.: Modified deep transformers for geodetic GNSS time series prediction. In: IEEE International Geoscience and Remote Sensing Symposium, Belgium (2021)

    Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations, San Diego, California, USA (2015)

    Google Scholar 

  21. Kim, J., El-Khamy, M., Lee, J.: Residual LSTM: design of a deep recurrent architecture for distant speech recognition. In: Proceedings of the Interspeech, pp. 1591–1595 (2017)

    Google Scholar 

  22. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–90 (2017)

    Article  Google Scholar 

  23. LeCunn, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  24. Lin, K., Lin, Q., Zhou, C., Yao, J.: Time series prediction based on linear regression and SVR. In: Third International Conference on Natural Computation (2007)

    Google Scholar 

  25. Liu, J., Gong, X.: Attention mechanism enhanced LSTM with residual architecture and its application for protein-protein interaction residue pairs prediction. BMC Bioinform. 20 (2019). https://doi.org/10.1186/s12859-019-3199-1

  26. Loffe, S., Szegedy, C.: Batch Normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456 (2015)

    Google Scholar 

  27. Makridakis, S., Spiliotis, E., Assimakopoulos, V.: Statistical and machine learning forecasting methods: concerns and ways forward. Plos One 13, e0194889 (2018)

    Article  Google Scholar 

  28. Modiri, S., Belda, S., Hoseini, M., Heinkelmann, R., Ferrándiz, J.M., Schuh, H.: A new hybrid method to improve the ultra-short-term prediction of LOD. J. Geodesy 94(2), 1–14 (2020). https://doi.org/10.1007/s00190-020-01354-y

    Article  Google Scholar 

  29. Nair, V., Hinton, G.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel (2010)

    Google Scholar 

  30. Petit, G., Luzum, B.: IERS Conventions. International Earth Rotation and Reference Systems Service (2010)

    Google Scholar 

  31. Piccolomini, E.L., Gandolfi, S., Poluzzi, L., Tavasci, L., Cascarano, P., Pascucci, A.: Recurrent neural networks applied to GNSS time series for denoising and prediction. In: 26th International Symposium on Temporal Representation and Reasoning (2019)

    Google Scholar 

  32. Qiao, H., Wang, T., Wang, P., Qiao, S., Zhang, L.: A time-distributed spatiotemporal feature learning method for machine health monitoring with multi-sensor time series. Sensors 18(9), 2932 (2018)

    Article  Google Scholar 

  33. Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Nat. Sci. Rep. 9, 19038 (2019)

    Google Scholar 

  34. Sutskever, I., Vinyals, O., Le, Q.-V.: Sequence to sequence learning with neural networks. In: Proceedings of the 27th International Conference on Neural Information Processing Systems, pp. 3104–3112 (2014)

    Google Scholar 

  35. Vaswani, A., et al.: Attention is all you need. In: 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA (2017)

    Google Scholar 

  36. Veerman, M.-A., Heerwaarden, C.C.-v.: Trends in and closure of the atmospheric angular momentum budget in the 20th century in ERA-20C. Q. J. R. Meteorol. Soc. 145(724), 2990–3003 (2019)

    Google Scholar 

  37. Wang, J., Nie, G., Gao, S., Wu, S., Li, H., Ren, X.: Landslide deformation prediction based on a GNSS time series analysis and recurrent neural network model. Remote Sens. 13, 1055 (2021)

    Article  Google Scholar 

  38. Zhai, X., Kolesnikov, A., Houlsby, N., Beyer, L.: Scaling vision transformers. arXiv (2021)

    Google Scholar 

  39. Zhao, H., Jia, J., Koltun, V.: Exploring self-attention for image recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10076–10085, Virtual (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Kiani Shahvandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kiani Shahvandi, M., Soja, B. (2022). Small Geodetic Datasets and Deep Networks: Attention-Based Residual LSTM Autoencoder Stacking for Geodetic Time Series. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2021. Lecture Notes in Computer Science(), vol 13163. Springer, Cham. https://doi.org/10.1007/978-3-030-95467-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95467-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95466-6

  • Online ISBN: 978-3-030-95467-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics