Skip to main content

The Label Recorder Method

Testing the Memorization Capacity of Machine Learning Models

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2021)

Abstract

Highly-parameterized deep neural networks are known to have strong data-memorization capability, but does this ability to memorize random data also extend to simple standard learning methods with few parameters? Following recent work exploring memorization in deep learning, we investigate memorization in standard non-neural learning models through the label recorder method, which uses a model’s training accuracy on randomized data to estimate its memorization ability, giving a distribution- and regularization-dependent label recording score. Label recording scores can be used to measure how capacity changes in response to regularization and other hyperparameter choices. This method is fully empirical, easy to implement, and works for all black-box classification methods. The label recording score supplements existing theoretical measures of model capacity such as Rademacher complexity and Vapnik-Chervonenkis (VC) dimension, while agreeing with conventional intuitions regarding statistical learning processes. We find that memorization ability is not limited to only over-parameterized models, but instead exists as a continuum, being present (to some degree) even in simple learning models with few parameters.

K. Rong and A. Khant—These authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bashir, D., Montañez, G.D., Sehra, S., Segura, P.S., Lauw, J.: An information-theoretic perspective on overfitting and underfitting. In: Gallagher, M., Moustafa, N., Lakshika, E. (eds.) AI 2020. LNCS (LNAI), vol. 12576, pp. 347–358. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64984-5_27

    Chapter  Google Scholar 

  2. Bassily, R., Moran, S., Nachum, I., Shafer, J., Yehudayoff, A.: Learners that use little information. In: Janoos, F., Mohri, M., Sridharan, K. (eds.) Proceedings of Algorithmic Learning Theory. Proceedings of Machine Learning Research, vol. 83, pp. 25–55. PMLR, 07–09 April 2018. http://proceedings.mlr.press/v83/bassily18a.html

  3. Castellini, J., Oliehoek, F.A., Savani, R., Whiteson, S.: The representational capacity of action-value networks for multi-agent reinforcement learning. In: Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, pp. 1862–1864 (2019)

    Google Scholar 

  4. Cortes, C., Kloft, M., Mohri, M.: Learning kernels using local rademacher complexity (2013)

    Google Scholar 

  5. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  6. Mahalunkar, A., Kelleher, J.D.: Using regular languages to explore the representational capacity of recurrent neural architectures. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018, Part III. LNCS, vol. 11141, pp. 189–198. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01424-7_19

    Chapter  Google Scholar 

  7. Montan\(\tilde{\text{e}}\)z, G.D.: Why Machine Learning Works. In: Dissertation. Carnegie Mellon University (2017)

    Google Scholar 

  8. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Pedregosa, F., et al.: Scikit-learn: mchine learning in Python. J. Mach. Learn. Rese. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Samengo, I., Treves, A.: Representational capacity of a set of independent neurons. Phys. Rev. E 63(1), 011910 (2000)

    Article  Google Scholar 

  11. Sandoval Segura, P., et al.: The Labeling Distribution Matrix (LDM): a tool for estimating machine learning algorithm capacity. In: Rocha, A.P., Steels, L., van den Herik, H.J. (eds.) Proceedings of the 12th International Conference on Agents and Artificial Intelligence, ICAART 2020, Valletta, Malta, 22–24 February 2020, vol. 2, pp. 980–986. SCITEPRESS (2020). https://doi.org/10.5220/0009178209800986

  12. Smith, S.L., Le, Q.V.: A Bayesian perspective on generalization and stochastic gradient descent. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  13. Vapnik, V., Levin, E., Cun, Y.L.: Measuring the VC-dimension of a learning machine. Neural Comput. 6(5), 851–876 (1994)

    Article  Google Scholar 

  14. Xu, A., Raginsky, M.: Information-theoretic analysis of generalization capability of learning algorithms. In: Proceedings of the 31st Conference on Neural Information Processing Systems (2017)

    Google Scholar 

  15. Yin, D., Kannan, R., Bartlett, P.: Rademacher complexity for adversarially robust generalization. In: International Conference on Machine Learning, pp. 7085–7094. PMLR (2019)

    Google Scholar 

  16. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding Deep Learning Requires Rethinking Generalization. CoRR abs/1611.03530 (2016). http://arxiv.org/abs/1611.03530

  17. Zhu, J., Gibson, B., Rogers, T.T.: Human Rademacher Complexity. Adv. Neural Inf. Process. Syst. 22, 2322–2330 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyle Rong , Aditya Khant , David Flores or George D. Montañez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rong, K., Khant, A., Flores, D., Montañez, G.D. (2022). The Label Recorder Method. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2021. Lecture Notes in Computer Science(), vol 13163. Springer, Cham. https://doi.org/10.1007/978-3-030-95467-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95467-3_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95466-6

  • Online ISBN: 978-3-030-95467-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics