Skip to main content

A New Nash-Probit Model for Binary Classification

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2021)

Abstract

The Nash equilibrium is used to estimate the parameters of a Probit binary classification model transformed into a multiplayer game. Each training data instance is a player of the game aiming to maximize its own log likelihood function. The Nash equilibrium of this game is approximated by modifying the Covariance Matrix Adaptation Evolution Strategy to search for the Nash equilibrium by using tournament selection with a Nash ascendancy relation based fitness assignment. The Nash ascendancy relation allows the comparison of two strategy profiles of the game. The purpose of the approach is to explore the Nash equilibrium as an alternate solution concept to the maximization of the log likelihood function. Numerical experiments illustrate the behavior of this approach, showing that for some instances the Nash equilibrium based solution can be better than the one offered by the baseline Probit model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Version 0.23.1.

  2. 2.

    Data available at UCI machine learning repository [1].

References

  1. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  2. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001). https://doi.org/10.1162/106365601750190398

    Article  Google Scholar 

  3. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer Series in Statistics. Springer, New York (2001). https://doi.org/10.1007/978-0-387-84858-7

  4. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning: data mining, inference and prediction. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

  5. Lung, R.I., Dumitrescu, D.: Computing Nash equilibria by means of evolutionary computation. Int. J. Comput. Commun. Control III(Suppl. Issue), 364–368 (2008)

    Google Scholar 

  6. Lung, R.I., Mihoc, T.D., Dumitrescu, D.: Nash extremal optimization and large cournot games. In: Pelta, D.A., Krasnogor, N., Dumitrescu, D., Chira, C., Lung, R. (eds.) Nature Inspired Cooperative Strategies for Optimization (NICSO 2011). Studies in Computational Intelligence, vol. 387, pp. 195–203. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24094-2_14

  7. Lung, R.I., Suciu, M.A.: Equilibrium in classification: a new game theoretic approach to supervised learning. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, GECCO 2020, pp. 137–138. Association for Computing Machinery, New York (2020)

    Google Scholar 

  8. Nan, J.-X., Zhang, L., Li, D.-F.: The method for solving bi-matrix games with intuitionistic fuzzy set payoffs. In: Li, D.-F. (ed.) EAGT 2019. CCIS, vol. 1082, pp. 131–150. Springer, Singapore (2019). https://doi.org/10.1007/978-981-15-0657-4_9

    Chapter  Google Scholar 

  9. Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)

    Article  MathSciNet  Google Scholar 

  10. Pavlidis, N., Parsopoulos, K., Vrahatis, M.: Computing Nash equilibria through computational intelligence methods. J. Comput. Appl. Math. 175(1), 113–136 (2005). Selected Papers of the International Conference on Computational Methods in Sciences and Engineering

    Google Scholar 

  11. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Rosset, S.: Model selection via the AUC. In: Proceedings of the Twenty-First International Conference on Machine Learning, ICML 2004, p. 89. Association for Computing Machinery, New York (2004). https://doi.org/10.1145/1015330.1015400

  13. Suciu, M.-A., Lung, R.I.: Nash equilibrium as a solution in supervised classification. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12269, pp. 539–551. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58112-1_37

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Ministry of Research, Innovation and Digitization, CNCS/CCCDI - UEFISCDI, project number 194/2021 within PNCDI III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodica Ioana Lung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Suciu, MA., Lung, R.I. (2022). A New Nash-Probit Model for Binary Classification. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2021. Lecture Notes in Computer Science(), vol 13164. Springer, Cham. https://doi.org/10.1007/978-3-030-95470-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95470-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95469-7

  • Online ISBN: 978-3-030-95470-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics