Skip to main content

Active Learning for Capturing Human Decision Policies in a Data Frugal Context

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2021)

Abstract

Modeling human expert decision patterns can potentially help create training and decision support systems when no ground truth data is available. A cognitive modeling approach presented herein uses a combination of supervised learning methods to mimic expert strategies. Yet without historical data logs on human expert judgments in a given domain, training machine learning algorithms with new examples to be labelled one by one by human experts can be time-consuming and costly. This paper investigates the use of active learning methods for example selection in policy capturing sessions with an oracle in order to optimize frugal learning efficiency. It also introduces a new hybrid method aimed at improving predictive accuracy based on a better management of the exploration/exploitation tradeoff. Analyses on three datasets evaluated data exploration, data exploitation and finally hybrid methods. Results highlight different tradeoffs of those methods and show the benefits of using a hybrid approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Settles, B.: Active Learning Literature Survey, vol. 52. University of Wisconsin Madison (2010)

    Google Scholar 

  2. Lafond, D., Roberge-Vallières, B., Vachon, F., Tremblay, S.: Judgment analysis in a dynamic multitask environment: capturing nonlinear policies using decision trees. J. Cogn. Eng. Decis. Mak. 11, 122–135 (2017)

    Article  Google Scholar 

  3. Labonté, K., Lafond, D., Hunter, A., Neyedli, H.F., Tremblay, S.: Comparing two decision support modes using the cognitive shadow online policy-capturing system. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 64, pp. 1125–1129 (2020)

    Google Scholar 

  4. Lafond, D., Tremblay, S., Banbury, S.: Cognitive shadow: a policy capturing tool to support naturalistic decision making. Presented at the IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), San Diego, 1 February 2013 (2013)

    Google Scholar 

  5. Lafond, D., Labonté, K., Hunter, A., Neyedli, H.F., Tremblay, S.: Judgment analysis for real-time decision support using the cognitive shadow policy-capturing system. In: Ahram, T., Taiar, R., Colson, S., Choplin, A. (eds.) IHIET 2019. AISC, vol. 1018, pp. 78–83. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-25629-6_13

    Chapter  Google Scholar 

  6. Chatelais, B., Lafond, D., Hains, A., Gagné, C.: Improving policy-capturing with active learning for real-time decision support. In: Ahram, T., Karwowski, W., Vergnano, A., Leali, F., Taiar, R. (eds.) IHSI 2020. AISC, vol. 1131, pp. 177–182. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39512-4_28

    Chapter  Google Scholar 

  7. Armstrong, J.S.: Judgmental bootstrapping: inferring experts’ rules for forecasting. In: Armstrong, J.S. (ed.) Principles of Forecasting, pp. 171–192. Springer, Boston (2001). https://doi.org/10.1007/978-0-306-47630-3_9

    Chapter  Google Scholar 

  8. Couronné, R., Probst, P., Boulesteix, A.-L.: Random forest versus logistic regression: a large-scale benchmark experiment. BMC Bioinformatics 19, 270 (2018)

    Article  Google Scholar 

  9. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 1345–1359 (2010)

    Article  Google Scholar 

  10. Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. J. Big Data 3(1), 1–40 (2016). https://doi.org/10.1186/s40537-016-0043-6

    Article  Google Scholar 

  11. Yang, Y.-Y., Lee, S.-C., Chung, Y.-A., Wu, T.-E., Chen, S.-A., Lin, H.-T.: libact: pool-based active learning in python (2017). https://arxiv.org/abs/1710.00379

  12. Wang, L., Hu, X., Yuan, B., Lu, J.: Active learning via query synthesis and nearest neighbour search. Neurocomputing 147, 426–434 (2015)

    Article  Google Scholar 

  13. Atlas, L., et al.: Training connectionist networks with queries and selective sampling. In: Proceedings of the 2nd International Conference on Neural Information Processing Systems, pp. 566–573. MIT Press, Cambridge (1989)

    Google Scholar 

  14. Smailović, J., Grčar, M., Lavrač, N., Žnidaršič, M.: Stream-based active learning for sentiment analysis in the financial domain. Inf. Sci. 285, 181–203 (2014)

    Article  Google Scholar 

  15. Tharwat, A., Schenck, W.: Balancing exploration and exploitation: a novel active learner for imbalanced data. Knowl. Based Syst. 210, 106500 (2020)

    Article  Google Scholar 

  16. Wang, M., Min, F., Zhang, Z.-H., Wu, Y.-X.: Active learning through density clustering. Expert Syst. Appl. 85, 305–317 (2017)

    Article  Google Scholar 

  17. Seung, H.S., Opper, M., Sompolinsky, H.: Query by committee. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory - COLT ’92, pp. 287–294. ACM Press, Pittsburgh (1992)

    Google Scholar 

  18. Lewis, D., Catlett, J., Cohen, W., Hirsh, H.: Heterogeneous Uncertainty Sampling for Supervised Learning (1996)

    Google Scholar 

  19. Cai, W., Zhang, Y., Zhou, J.: Maximizing expected model change for active learning in regression. In: 2013 IEEE 13th International Conference on Data Mining, pp. 51–60. IEEE, Dallas (2013)

    Google Scholar 

  20. Roy, N., Mccallum, A.: Toward optimal active learning through sampling estimation of error reduction. In: Proceedings of the 18th International Conference on Machine Learning (2001)

    Google Scholar 

  21. Danka, T., Horvath, P.: modAL: a modular active learning framework for python (2018). https://arxiv.org/abs/1805.00979

  22. Marois, A., Chatelais, B., Grossetête, L., Lafond, D.: Evaluation of evolutionary algorithms under frugal learning constraints for online policy capturing. Presented at the IEEE International Multi-disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), Conference Presented Virtually 21 April (2021)

    Google Scholar 

  23. Bouneffouf, D., Laroche, R., Urvoy, T., Féraud, R., Allesiardo, R.: Contextual Bandit for Active Learning: Active Thompson Sampling (2014). https://hal.archives-ouvertes.fr/hal-01069802

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loïc Grossetête .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grossetête, L., Marois, A., Chatelais, B., Gagné, C., Lafond, D. (2022). Active Learning for Capturing Human Decision Policies in a Data Frugal Context. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2021. Lecture Notes in Computer Science(), vol 13164. Springer, Cham. https://doi.org/10.1007/978-3-030-95470-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95470-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95469-7

  • Online ISBN: 978-3-030-95470-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics