Skip to main content

Online Semi-supervised Learning from Evolving Data Streams with Meta-features and Deep Reinforcement Learning

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13164))

  • 1783 Accesses

Abstract

Online semi-supervised learning (SSL) from data streams is an emerging area of research with many applications due to the fact that it is often expensive, time-consuming, and sometimes even unfeasible to collect labelled data from streaming domains. State-of-the-art online SSL algorithms use clustering techniques to maintain micro-clusters, or, alternatively, employ wrapper methods that utilize pseudo-labeling based on confidence scores. Current approaches may introduce false behaviour or make limited use of labelled instances, thus potentially leading to important information being overlooked. In this paper, we introduce the novel Online Reinforce SSL algorithm that uses various K Nearest Neighbour (KNN) classifiers to learn meta-features across diverse domains. Our Online Reinforce SSL algorithm features a meta-reinforcement learning agent trained on multiple-source streams obtained by extracting meta-features and subsequently transferring this meta-knowledge to our target domain. That is, the predictions of the KNN learners are used to select pseudo-labels for the target domain as instances arrive via an incremental learning paradigm. Extensive experiments on benchmark datasets demonstrate the value of our approach and confirm that Online Reinforce SSL outperforms both the state-of-the-art and a self-training baseline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Our repository is available at https://github.com/pvafaie/Online-Reinforce-SSL.

References

  1. van Engelen, J.E., Hoos, H.H.: A survey on semi-supervised learning. Mach. Learn. 109(2), 373–440 (2019). https://doi.org/10.1007/s10994-019-05855-6

    Article  MathSciNet  MATH  Google Scholar 

  2. Zhu, X., Goldberg, A.B.: Introduction to semi-supervised learning. Synth. Lect. Artif. Intell. Mach. Learn. 3(1), 1–130 (2009)

    MATH  Google Scholar 

  3. Ud Din, S., Shao, J., Kumar, J., Ali, W., Liu, J., Ye, Y.: Online reliable semi-supervised learning on evolving data streams. Inf. Sci. 525, 153–171 (2020). https://www.sciencedirect.com/science/article/pii/S0020025520302322

  4. Hosseini, M.J., Gholipour, A., Beigy, H.: An ensemble of cluster-based classifiers for semi-supervised classification of non-stationary data streams. Knowl. Inf. Syst. 46(3), 567–597 (2015). https://doi.org/10.1007/s10115-015-0837-4

    Article  Google Scholar 

  5. Wang, Y., Li, T.: Improving semi-supervised co-forest algorithm in evolving data streams. Appl. Intell. 4(10), 3248–3262 (2018)

    Article  Google Scholar 

  6. Vafaie, P., Viktor, H., Michalowski, W.: Multi-class imbalanced semi-supervised learning from streams through online ensembles. In: International Conference on Data Mining Workshops (ICDMW) 2020, pp. 867–874 (2020)

    Google Scholar 

  7. Floyd, S.L.A., Viktor, H.L.: Soft voting windowing ensembles for learning from partially labelled streams. In: Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z. (eds.) NFMCP 2019. LNCS (LNAI), vol. 11948, pp. 85–99. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48861-1_6

    Chapter  Google Scholar 

  8. Hospedales, T., Antoniou, A., Micaelli, P., Storkey, A.: Meta-learning in neural networks: a survey, arXiv preprint arXiv:2004.05439 (2020)

  9. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning. PMLR, pp. 1126–1135 (2017)

    Google Scholar 

  10. Mishra, N., Rohaninejad, M., Chen, X., Abbeel, P.: A simple neural attentive meta-learner, arXiv preprint arXiv:1707.03141 (2017)

  11. Zha, D., Lai, K.-H., Wan, M., Hu, X.: Meta-AAD: active anomaly detection with deep reinforcement learning, arXiv preprint arXiv:2009.07415 (2020)

  12. Settles, B.: Active learning. Synth. Lect. Artif. Intell. Mach. Learn. 6(1), 1–114 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Haque, A., Khan, L., Baron, M.: Sand: semi-supervised adaptive novel class detection and classification over data stream. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  14. Wagner, T., Guha, S., Kasiviswanathan, S., Mishra, N.: Semi-supervised learning on data streams via temporal label propagation. In: International Conference on Machine Learning. PMLR, pp. 5095–5104 (2018)

    Google Scholar 

  15. Shao, J., Huang, C., Yang, Q., Luo, G.: Reliable semi-supervised learning. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 1197–1202. IEEE (2016)

    Google Scholar 

  16. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms, arXiv preprint arXiv:1707.06347 (2017)

  17. Schulman, J., Moritz, P., Levine, S., Jordan, M., Abbeel, P.: High-dimensional continuous control using generalized advantage estimation, arXiv preprint arXiv:1506.02438 (2015)

  18. Bifet, A., Gavaldà, R., Holmes, G., Pfahringer, B.: Machine Learning for Data Streams with Practical Examples in MOA. MIT Press (2018). https://moa.cms.waikato.ac.nz/book/

  19. Vergara, A., Vembu, S., Ayhan, T., Ryan, M.A., Homer, M.L., Huerta, R.: Chemical gas sensor drift compensation using classifier ensembles. Sens. Actuators B: Chem. 166–167, 320–329 (2012). http://www.sciencedirect.com/science/article/pii/S0925400512002018

  20. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  21. Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: 2012 16th International Symposium on Wearable Computers, pp. 108–109 (2012)

    Google Scholar 

  22. Raffin, A., Hill, A., Ernestus, M., Gleave, A., Kanervisto, A., Dormann, N.: Stable baselines3 (2019). https://github.com/DLR-RM/stable-baselines3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herna Viktor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vafaie, P., Viktor, H., Paquet, E., Michalowski, W. (2022). Online Semi-supervised Learning from Evolving Data Streams with Meta-features and Deep Reinforcement Learning. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2021. Lecture Notes in Computer Science(), vol 13164. Springer, Cham. https://doi.org/10.1007/978-3-030-95470-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95470-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95469-7

  • Online ISBN: 978-3-030-95470-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics