Skip to main content

A M-PSK Timing Recovery Loop Based on Q-Learning

  • Conference paper
  • First Online:
Applications in Electronics Pervading Industry, Environment and Society (ApplePies 2021)

Abstract

In this work we propose a digital symbol synchronizer for M-PSK modulations based on the Q-Learning algorithm. Through Reinforcement Learning, the system is able to autonomously adapt to environment changes, learning the correct Timing Recovery Loop behavior. The proposed synchronizer has been tested considering a white gaussian noisy channel. We analyzed the modulation error rate and the signal to noise ratio. The obtained results show improved timing recovery capabilities exhibiting a lower locking time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Haykin, S.: Communication Systems, vol. 103, no 6, 4th edn. Wiley, New York (2000). (Simon Haykin With Solutions Manual.pdf. Cell)

    Google Scholar 

  2. Ling, F., Proakis, J.: Synchronization in Digital Communication Systems. Cambridge University Press, Cambridge (2017). https://doi.org/10.1017/9781316335444

    Book  Google Scholar 

  3. Naidoo, G.M.: Digital communication: information Communication Technology (ICT) usage for teaching and learning. In: Montebello, M. (ed.) Handbook of Research on Digital Learning, pp. 1–19. IGI Global (2020). https://doi.org/10.4018/978-1-5225-9304-1.ch001

  4. Sklar, B.: Digital Communications: Fundamentals and Applications. Signals, 2nd edn. Communications Engineering Services, Tarzana (2001)

    Google Scholar 

  5. Mueller, K., Muller, M.: Timing recovery in digital synchronous data receivers. IEEE Trans. Commun. 24(5), 516–531 (1976). https://doi.org/10.1109/TCOM.1976.1093326

    Article  MATH  Google Scholar 

  6. Gardner, F.: A BPSK/QPSK timing-error detector for sampled receivers. IEEE Trans. Commun. 34(5), 423–429 (1986). https://doi.org/10.1109/TCOM.1986.1096561

    Article  Google Scholar 

  7. Giardino, D., et al.: M-PSK demodulator with joint carrier and timing recovery. IEEE Trans. Circuits Syst. II Express Briefs (2020). https://doi.org/10.1109/TCSII.2020.3041342

    Article  Google Scholar 

  8. Cardarilli, G.C., et al.: A Q-learning based PSK symbol synchronizer (2019). https://doi.org/10.1109/ISSCS.2019.8801727

  9. Matta, M., et al.: A reinforcement learning-based QAM/PSK symbol synchronizer. IEEE Access 7, 124147–124157 (2019). https://doi.org/10.1109/ACCESS.2019.2938390

  10. Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduction. IEEE Trans. Neural Networks 9(5), 1054–1054 (1998). https://doi.org/10.1109/TNN.1998.712192

    Article  Google Scholar 

  11. Cardarilli, G.C., et al.: An action-selection policy generator for reinforcement learning hardware accelerators. In: Saponara, S., De Gloria, A. (eds.) ApplePies 2020. LNEE, vol. 738, pp. 267–272. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-66729-0_32

    Chapter  Google Scholar 

  12. Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992). https://doi.org/10.1007/BF00992698

    Article  MATH  Google Scholar 

  13. Spanò, S., et al.: An efficient hardware implementation of reinforcement learning: the q-learning algorithm. IEEE Access 7, 186340–186351 (2019). https://doi.org/10.1109/ACCESS.2019.2961174

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Spanò .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cardarilli, G.C. et al. (2022). A M-PSK Timing Recovery Loop Based on Q-Learning. In: Saponara, S., De Gloria, A. (eds) Applications in Electronics Pervading Industry, Environment and Society. ApplePies 2021. Lecture Notes in Electrical Engineering, vol 866. Springer, Cham. https://doi.org/10.1007/978-3-030-95498-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95498-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95497-0

  • Online ISBN: 978-3-030-95498-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics