Skip to main content

Variation of the Intercession Coefficient Used as a Hyper Parameter in Machine Learning in Regression Models

  • Conference paper
  • First Online:
Informatics and Intelligent Applications (ICIIA 2021)

Abstract

Within the area of data science, the hyper parameters arguments affect the execution of the algorithms and due to their particularity, must be used separately for each machine learning model in quantitative predictions, known as regression. Two quality metrics from regression models will be used in order to demonstrate the changes: Mean Square Error, (MSE) and the value of the R2 coefficient.

In the present work, using simulation of the interception coefficient, it will be demonstrated the existence of machine learning algorithms that are sensitive: Mean Square Error and/or the value of the R2 coefficient.

It is important to highlight that the intercept coefficient is considered as a reference argument. The present research is only a very small space of an automated machine learning process (AutoML) with regard to sensitivity analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hutter, F., Kotthoff, L., Vanschoren, J.: Automated Machine Learning Methods, Systems, Challenges. Springer, Barcelona (2019)

    Book  Google Scholar 

  2. Long, J., Teetor, P., Cookbook, R.: Proven Recipes for Data Analysis, Statistics & Graphics, 2nd edn. O’Reilly Media Inc, Sebastopool (2019)

    Google Scholar 

  3. Montgomery, D.C., Peck, E.A., Vining, G.G.: Introduction to Linear Regression Analysis, 3rd edn. Continental Publishing Company, New York (2012)

    MATH  Google Scholar 

  4. Grus, J.: Data science from scratch. In: Cronin, M. (ed.) First Principles with Python, 2nd edn. O’Reilly Media Inc, Sebastopol (2019)

    Google Scholar 

  5. Orellana Alvear, J.: Arboles de decisión y Random Forest, Universidad de Cuenca, 12 November 2018. https://bookdown.org/content/2031/. Accessed 1 Mar 2021

  6. Sullivan, W.: Machine Learning For Beginners: Algorithms, Decision Tree & Random Forest Introduction. Healthy Pragmatic Solutions, New York (2017)

    Google Scholar 

  7. Suykens, J.A.: Regularization, Optimization, Kernels, and Support Vector Machines. CRC Press, New York (2014)

    Book  Google Scholar 

  8. Hernández Orallo, J., Ferri Ramírez, C., Ramírez Quintana, M.J.: Introducción a la minería de datos. Pearson Educación, Madrid (2004)

    Google Scholar 

  9. Duboue, P.: The Art of Feature Engineering: Essentials for Machine Learning, pp. 20–25. Cambridge University Press, New York (2020)

    Book  Google Scholar 

  10. RiveraJorda, E., Raqueno, A.: Predictive model for the academic performance of the engineering students using CHAID and C 5.0 algorithm. Int. J. Eng. Res. Technol. 12(6), 917–918 (2019)

    Google Scholar 

  11. Meghana, S., Trupti, P.: Consolidation of C 5.0, random forest and random tree crafts for intrusion detection system. Int. J. Res. Eng. Sci. Manage. 2(11), 432–435 (2019)

    Google Scholar 

  12. Tatsat, H., Puri, S., Lookabaugh, B.: Machine Learning and Data Science Blueprint for Finance. Oreilly, Sebatopol (2021)

    Google Scholar 

  13. Myers, R.H., Myers, S.L., Walpole, R.E.: Probability and Statistics For Engineers - 6b. Prentice Hall, New York (2000)

    MATH  Google Scholar 

  14. Goic, M.: Duality and Sensitivity Analysis, 1 January 2020. https://www.u-cursos.cl/usuario/e4ec9e12c4e47e3de09b0ff5dbe14eb0/mi_blog/r/dualidad.pdf. Accessed 1 Mar 2021

  15. Muñoz-Cañón, N.D., Romero-Triana, J.A.: Optimization of the hyperparameters of a support vector regression machine using particle swarm for forecasting COVID-19 cases. Revista UIS Ingenierías 20(2), 181–196 (2021)

    Article  Google Scholar 

  16. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufman, New York (2005)

    MATH  Google Scholar 

  17. Usuelli, M.: Essentials, R Machine Learning. Packt, New York (2012)

    Google Scholar 

  18. Zhao, Y.: R and Data Mining Examples and Case Studies. Academic Press, New York (2012)

    Google Scholar 

  19. Fisher, R.: Iris Data Set (1988). https://archive.ics.uci.edu/ml/datasets/iris

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Echeverria, F., Leon, M., Esteves, Z., Redroban, C. (2022). Variation of the Intercession Coefficient Used as a Hyper Parameter in Machine Learning in Regression Models. In: Misra, S., Oluranti, J., Damaševičius, R., Maskeliunas, R. (eds) Informatics and Intelligent Applications. ICIIA 2021. Communications in Computer and Information Science, vol 1547. Springer, Cham. https://doi.org/10.1007/978-3-030-95630-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95630-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95629-5

  • Online ISBN: 978-3-030-95630-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics