Skip to main content

Population Size Management in a Cuckoo Search Algorithm Solving Combinatorial Problems

  • Conference paper
  • First Online:
Informatics and Intelligent Applications (ICIIA 2021)

Abstract

As is well known in the scientific community, optimization problems are becoming increasingly common, complex, and difficult to solve. The use of metaheuristics to solve these problems is gaining momentum thanks to their great adaptability. Because of this, there is a need to generate robust metaheuristics with a good balance of exploration and exploitation for different optimization problems. Our proposal seeks to improve the exploration and exploitation balance by incorporating a dynamic variation of the population. For this purpose, we implement the Cuckoo Search metaheuristic in its two versions, with and without dynamic population, to solve 3 classical optimization problems. Preliminary results are very good in terms of performance but indicate that it is not enough to vary the population dynamically, but it is necessary to add additional perturbation operators to force changes in the metaheuristic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bujok, P., Tvrdík, J.: Enhanced individual-dependent differential evolution with population size adaptation. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 1358–1365. IEEE (2017)

    Google Scholar 

  2. Crawford, B., León de la Barra, C.: Los algoritmos ambidiestros (2020). https://www.mercuriovalpo.cl/impresa/2020/07/13/full/cuerpo-principal/15/. Acceded 12 Feb 2021

  3. Crawford, B., Soto, R., Astorga, G., García, J., Castro, C., Paredes, F.: Putting continuous metaheuristics to work in binary search spaces. Complexity 2017 (2017). https://doi.org/10.1155/2017/8404231

  4. Crawford, B., et al.: A comparison of Learnheuristics using different Reward Functions to solve the Set Covering Problem. In: Dorronsoro, B., Amodeo, L., Pavone, M., Ruiz, P. (eds.) OLA 2021. CCIS, vol. 1443, pp. 74–85. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85672-4_6

    Chapter  Google Scholar 

  5. Crawford, B., et al.: Q-learnheuristics: towards data-driven balanced metaheuristics. Mathematics 9(16), 1839 (2021). https://doi.org/10.3390/math9161839

    Article  Google Scholar 

  6. Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. (CSUR) 45(3), 1–33 (2013)

    Article  Google Scholar 

  7. Dhal, K.G., Das, A., Sahoo, S., Das, R., Das, S.: Measuring the curse of population size over swarm intelligence based algorithms. Evol. Syst. 12(3), 779–826 (2019). https://doi.org/10.1007/s12530-019-09318-0

    Article  Google Scholar 

  8. Feng, Y., An, H., Gao, X.: The importance of transfer function in solving set-union knapsack problem based on discrete moth search algorithm. Mathematics 7(1), 17 (2019)

    Article  Google Scholar 

  9. Gherboudj, A., Chikhi, S.: BPSO algorithms for knapsack problem. In: Özcan, A., Zizka, J., Nagamalai, D. (eds.) CoNeCo/WiMo -2011. CCIS, vol. 162, pp. 217–227. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21937-5_20

    Chapter  Google Scholar 

  10. Hartmanis, J.: Computers and intractability: a guide to the theory of NP-completeness (Michael R. Garey and David S. Johnson). SIAM Rev. 24(1), 90 (1982)

    Article  Google Scholar 

  11. Hussain, K., Zhu, W., Mohd Salleh, M.N.: Long-term memory Harris’ hawk optimization for high dimensional and optimal power flow problems. IEEE Access 7, 147596–147616 (2019). https://doi.org/10.1109/ACCESS.2019.2946664

    Article  Google Scholar 

  12. Lanza-Gutierrez, J.M., Caballe, N., Crawford, B., Soto, R., Gomez-Pulido, J.A., Paredes, F.: Exploring further advantages in an alternative formulation for the set covering problem. Math. Probl. Eng. 2020 (2020). https://doi.org/10.1155/2020/5473501

  13. Lemus-Romani, J., et al.: Ambidextrous socio-cultural algorithms. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12254, pp. 923–938. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58817-5_65

    Chapter  Google Scholar 

  14. Limmer, S., Fey, D.: Investigation of strategies for an increasing population size in multi-objective CMA-ES. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 476–483. IEEE (2016)

    Google Scholar 

  15. Morales-Castañeda, B., Zaldivar, D., Cuevas, E., Fausto, F., Rodríguez, A.: A better balance in metaheuristic algorithms: does it exist? Swarm Evol. Comput. 54, 100671 (2020)

    Article  Google Scholar 

  16. Morales-Castañeda, B., Zaldívar, D., Cuevas, E., Rodríguez, A., Navarro, M.A.: Population management in metaheuristic algorithms: could less be more? Appl. Soft Comput. 107, 107389 (2021). https://doi.org/10.1016/j.asoc.2021.107389

    Article  Google Scholar 

  17. Olorunda, O., Engelbrecht, A.P.: Measuring exploration/exploitation in particle swarms using swarm diversity. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 1128–1134. IEEE (2008)

    Google Scholar 

  18. Ozsoydan, F.B., Baykasoglu, A.: A swarm intelligence-based algorithm for the set-union knapsack problem. Future Gener. Comput. Syst. 93, 560–569 (2019)

    Article  Google Scholar 

  19. Soto, R., Crawford, B., Olivares, R., Barraza, J., Johnson, F., Paredes, F.: A binary cuckoo search algorithm for solving the set covering problem. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H. (eds.) IWINAC 2015. LNCS, vol. 9108, pp. 88–97. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18833-1_10

    Chapter  Google Scholar 

  20. Talbi, E.G.: Metaheuristics: From Design to Implementation. Wiley, Hoboken (2009)

    Book  Google Scholar 

  21. Tapia, D., et al.: Embedding Q-Learning in the selection of metaheuristic operators: the enhanced binary grey wolf optimizer case. In: 2021 IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA), pp. 1–6 (2021). https://doi.org/10.1109/ICAACCA51523.2021.9465259

  22. Vásquez, C., et al.: Solving the 0/1 knapsack problem using a galactic swarm optimization with data-driven binarization approaches. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12254, pp. 511–526. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58817-5_38

    Chapter  Google Scholar 

  23. Wei, Z., Hao, J.K.: Iterated two-phase local search for the Set-Union Knapsack Problem. Future Gener. Comput. Syst. 101, 1005–1017 (2019)

    Article  Google Scholar 

  24. Wei, Z., Hao, J.K.: Kernel based tabu search for the Set-Union Knapsack Problem. Expert Syst. Appl. 165, 113802 (2021)

    Article  Google Scholar 

  25. Wei, Z., Hao, J.K.: Multistart solution-based tabu search for the Set-Union Knapsack Problem. Appl. Soft Comput. 105, 107260 (2021)

    Article  Google Scholar 

  26. Xu, J., Zhang, J.: Exploration-exploitation tradeoffs in metaheuristics: survey and analysis. In: Proceedings of the 33rd Chinese Control Conference, pp. 8633–8638. IEEE (2014)

    Google Scholar 

  27. Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: 2009 World Congress on Nature Biologically Inspired Computing (NaBIC), pp. 210–214. IEEE (2009). https://doi.org/10.1109/NABIC.2009.5393690

  28. Yang, X.S., Deb, S., Fong, S.: Metaheuristic algorithms: optimal balance of intensification and diversification. Appl. Math. Inf. Sci. 8(3), 977 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

Broderick Crawford and Wenceslao Palma are supported by Grant ANID/FONDECYT/REGULAR/1210810. Ricardo Soto is supported by grant CONICYT/FONDECYT/REGULAR/1190129. Marcelo Becerra-Rozas is supported by National Agency for Research and Development (ANID)/Scholarship Program/DOCTORADO NACIONAL/2021-21210740. Broderick Crawford, Ricardo Soto and Marcelo Becerra-Rozas are supported by Grant Nucleo de Investigacion en Data Analytics/VRIEA/PUCV/039.432/2020. Marcelo Becerra-Rozas are supported by Grant DI Investigación Interdisciplinaria del Pregrado/VRIEA/PUCV/039.421/2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Becerra-Rozas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chávez, M. et al. (2022). Population Size Management in a Cuckoo Search Algorithm Solving Combinatorial Problems. In: Misra, S., Oluranti, J., Damaševičius, R., Maskeliunas, R. (eds) Informatics and Intelligent Applications. ICIIA 2021. Communications in Computer and Information Science, vol 1547. Springer, Cham. https://doi.org/10.1007/978-3-030-95630-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95630-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95629-5

  • Online ISBN: 978-3-030-95630-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics