Skip to main content

Heart Disease Classification Using Machine Learning Models

  • Conference paper
  • First Online:
Informatics and Intelligent Applications (ICIIA 2021)

Abstract

Heart Disease (HD) is a candidate for the utmost communal death-recording diseases in history and an early detection is a herculean task for countless physicians. This paper aims at developing a precise and efficient machine learning (ML) classification model for HD. The HD dataset was subjected to seven different machine learning models, including k-Nearest Neighbour (k-NN), eXtreme Gradient Boosting (XGBoost), Extra Trees (ET), Decision Tree (DT), Light Gradient Boosting Machine (LGBM), Support Vector Machine (SVM), and Random Forest (RF). Recall, precision, F1-Score, accuracy, ROC, and RPC were all used to evaluate the proposed models. The results obtained based on the aforementioned metrics in comparison to other models indicate that ET performed better. ET achieved 87% accuracy, precision (0.88), RPC (0.86), Recall (0.87), ROC (0.94), and F1-score (0.935) respectively. The outcomes indicates that ML models can classify HD patients effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.kaggle.com/johnsmith88/heart-disease-dataset.

References

  1. Odusami, M., Maskeliunas, R., Damaševičius, R., Misra, S.: Comparable study of pre-trained model on Alzheimer disease classification. In: Gervasi, O., et al. (eds.) ICCSA 2021. LNCS, vol. 12953, pp. 63–74. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86976-2_5

    Chapter  Google Scholar 

  2. Durairaj, M., Ramasamy, N.: A comparison of the perceptive approaches for preprocessing the data set for predicting fertility success rate. Int. J. Control Theory Appl. 9(27), 255–260 (2016)

    Google Scholar 

  3. Udenwagu, N., Azeta, A., Misra, S., Nwaocha, V., Enosegbe, D., Sharma, M.: ExplainEx: an explainable artificial intelligence framework for interpreting predictive models. In: Abraham, A., Hanne, T., Castillo, O., Gandhi, N., Nogueira Rios, T., Hong, T.-P. (eds.) HIS 2020. AISC, vol. 1375, pp. 505–515. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-73050-5_51

    Chapter  Google Scholar 

  4. Awotunde, J., Folorunso, S., Bhoi, A., Adebayo, P., Ijaz, M.: Disease diagnosis system for IoT-based wearable body sensors with machine learning algorithm. In: Kumar Bhoi, A., Mallick, P.K., Narayana Mohanty, M., Ade Albuquerque, V.H.C. (eds.) Hybrid Artificial Intelligence and IoT in Healthcare. ISRL, vol. 209, pp. 201–222. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-2972-3_10

    Chapter  Google Scholar 

  5. Ghwanmeh, S., Mohammad, A., Al-Ibrahim, A.: Innovative artificial neural networks-based decision support system for heart diseases diagnosis (2013)

    Google Scholar 

  6. Baumgartner, H., et al.: 2020 ESC Guidelines for the management of adult congenital heart disease: the Task Force for the management of adult congenital heart disease of the European Society of Cardiology (ESC). Eur. Heart J. 42(6), 563–645 (2021)

    Google Scholar 

  7. Karay, K.M., et al.: Clinical profiles and outcomes of heart failure in five African Countries: results from INTER-CHF study. Global Heart 16(1), 50 (2021)

    Google Scholar 

  8. López-Sendón, J.: The heart failure epidemic. Medicographia 33(4), 363–369 (2011)

    Google Scholar 

  9. Ndagire, E., et al.: Examining the Ugandan health system’s readiness to deliver rheumatic heart disease-related services. PLoS Negl. Trop. Dis. 15(2), e0009164 (2021)

    Google Scholar 

  10. Almustafa, K.M.: Prediction of heart disease and classifiers’ sensitivity analysis. BMC Bioinform. 21(278), 1–18 (2020)

    Google Scholar 

  11. Tougui, I., Jilbab, A., El Mhamdi, J.: Heart disease classification using data mining tools and machine learning techniques. Health Technol. 10, 137–1144 (2020)

    Article  Google Scholar 

  12. Azeez, N., et al.: A fuzzy expert system for diagnosing and analyzing human diseases. In: Abraham, A., Gandhi, N., Pant, M. (eds.) IBICA 2018. AISC, vol. 939, pp. 474–484. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16681-6_47

    Chapter  Google Scholar 

  13. Abdeldjouad, F.Z., Brahami, M., Matta, N.: A hybrid approach for heart disease diagnosis and prediction using machine learning techniques. In: Jmaiel, M., Mokhtari, M., Abdulrazak, B., Aloulou, H., Kallel, S. (eds.) ICOST 2020. LNCS, vol. 12157, pp. 299–306. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51517-1_26

    Chapter  Google Scholar 

  14. El-Bialy, R., Salamay, M.A., Karam, H.O., Khalifa, M.E.: Feature analysis of coronary artery heart disease data sets. In: International Conference on Communication, Management and Information Technology (ICCMIT 2015) (2015)

    Google Scholar 

  15. Gao, X.-Y., Ali, A.A., Hassan, H.S., Anwar, E.M.: Improving the accuracy for analyzing heart diseases prediction based on the ensemble method. Complexity 2021(6663455), 10 (2021)

    Google Scholar 

  16. Spencer, R., Thabtah, F., Abdelhamid, N., Thompson, M.: Exploring feature selection and classification methods for predicting heart disease. Digit. Health 6, 1–10 (2020)

    Google Scholar 

  17. Ali, F., et al.: A smart healthcare monitoring system for heart disease prediction based on ensemble deep learning and feature fusion. Inf. Fusion 63, 208–222 (2020)

    Article  Google Scholar 

  18. Beunza, J.J., et al.: Comparison of machine learning algorithms for clinical event prediction (risk of coronary heart disease). J. Biomed. Inform. 97, 103257 (2019)

    Article  Google Scholar 

  19. El Hamdaoui, H., Boujraf, S., Chaoui, N.E.H., Maaroufi, M.: A clinical support system for prediction of heart disease using machine learning techniques. In: 2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP) (2020)

    Google Scholar 

  20. Kavitha, M., Gnaneswar, G., Dinesh, R., Sai, Y.R., Suraj, R.S.: Heart disease prediction using hybrid machine learning model. In: 6th International Conference on Inventive Computation Technologies (ICICT) (2021)

    Google Scholar 

  21. Aggrawal, R., Pal, S.: Sequential feature selection and machine learning algorithm-based patient’s death events prediction and diagnosis in heart disease. SN Comput. Sci. 1(6), 1–16 (2020)

    Article  Google Scholar 

  22. Wu, J.H., et al.: Risk assessment of hypertension in steel workers based on LVQ and Fisher-SVM deep excavation. IEEE Access 7, 23109–23119 (2019)

    Article  Google Scholar 

  23. Breiman, L.: Random forests. BMach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  24. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)

    MATH  Google Scholar 

  25. Chen, T., Guestrin, C.: XGBoost: A Scalable Tree Boosting System (2016)

    Google Scholar 

  26. Folorunso, S.O., Afolabi, S.A., Owodeyi, A.B.: Dissecting genre of nigerian music with machine learning models. J. King Saud Univ. Comput. Inf. Sci., 1–24 (2021)

    Google Scholar 

  27. Iheme, P.C., Nicholas, A., Omoregbe, S.M., Adeloye, D., Adewumi, A.O.: Mobile-bayesian diagnostic system for childhood infectious diseases, pp. 109–118 (2017)

    Google Scholar 

  28. Thompson, T., Sowunmi, O., Misra, S., Fernandez-Sanz, L., Crawford, B., Soto, R.: An expert system for the diagnosis of sexually transmitted diseases–ESSTD. J. Intell. Fuzzy Syst. 33(4), 2007–2017 (2017)

    Article  Google Scholar 

  29. Cohen, S.: The basics of machine learning: strategies and techniques. In: Artificial Intelligence and Deep Learning in Pathology, pp. 13–40 (2021)

    Google Scholar 

  30. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006)

    Article  Google Scholar 

  31. Folorunso, S.O., Awotunde, J.B., Adeboye, N.O., Matiluko, O.E.: Data classification model for COVID-19 pandemic. In: Hassanien, A.-E., Elghamrawy, S.M., Zelinka, I. (eds.) Advances in Data Science and Intelligent Data Communication Technologies for COVID-19. SSDC, vol. 378, pp. 93–118. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-77302-1_6

    Chapter  Google Scholar 

  32. Fitkov-Norris, E., Folorunso, S.O.: Impact of sampling on neural network classification performance in the context of repeat movie viewing. In: liadis, L., Papadopoulos, H., Jayne, C. (eds.) EANN 2013. CCIS, vol. 383. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41013-0

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Bamidele Awotunde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Folorunso, S.O., Awotunde, J.B., Adeniyi, E.A., Abiodun, K.M., Ayo, F.E. (2022). Heart Disease Classification Using Machine Learning Models. In: Misra, S., Oluranti, J., Damaševičius, R., Maskeliunas, R. (eds) Informatics and Intelligent Applications. ICIIA 2021. Communications in Computer and Information Science, vol 1547. Springer, Cham. https://doi.org/10.1007/978-3-030-95630-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95630-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95629-5

  • Online ISBN: 978-3-030-95630-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics