Skip to main content

A Deep Learning-Based Intrusion Detection Technique for a Secured IoMT System

  • Conference paper
  • First Online:
Informatics and Intelligent Applications (ICIIA 2021)

Abstract

The emergence of medical sensors in smart healthcare has brought about an intelligent Internet of Medical Things (IoMT) system for detecting life-threatening ill-ness globally. The IoMT-based system has been used to generate a huge amount of data that experts can use for various purposes like diagnosis, prediction, and real-time monitoring of patients. However, patients’ health data must be transferred to cloud database storage and external computing devices for processing due to the limited storage capability and calculation capability of IoMT-based devices. This can result in security and privacy issues due to a lack of control over the patient’s health information and the network’s vulnerability to numerous forms of assaults. Therefore, this paper proposes a swarm-neural net-work-based model to detect intruders in the data-centric IoMT-based system. The proposed model can be used to detect intruders during data transfer, allowing for efficient and accurate analysis of healthcare data at the network’s edge. The performance of the system was tested using a real-time NF-ToN-IoT dataset for IoT applications that collected telemetry, operating systems, and network data. The results of the proposed model are compared over the standard intrusion detection classification models that use the same dataset using various performance metrics. The experimental results reveal that the proposed model attains 89.0% accuracy over the ToN-IoT dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Awotunde, J., Bhoi, A., Barsocchi, P.: Hybrid Cloud/Fog environment for healthcare: an exploratory study, opportunities, challenges, and future prospects. In: KumarBhoi, A., Mallick, P.K., Narayana Mohanty, M., deAlbuquerque, V.H.C. (eds.) Hybrid Artificial Intelligence and IoT in Healthcare. ISRL, vol. 209, pp. 1–20. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-2972-3_1

    Chapter  Google Scholar 

  2. Awotunde, J.B., Folorunso, S.O., Bhoi, A.K., Adebayo, P.O., Ijaz, M.F.: Disease diagnosis system for IoT-based wearable body sensors with machine learning algorithm. Intell. Syst. Ref. Libr. 209, 201–222 (2021)

    Google Scholar 

  3. Ogundokun, R.O., Awotunde, J.B., Adeniyi, E.A., Ayo, F.E.: Crypto-Stegno based model for securing medical information on IOMT platform. Multimedia Tools Appl. 80(21–23), 31705–31727 (2021). https://doi.org/10.1007/s11042-021-11125-2

    Article  Google Scholar 

  4. Alsaedi, A., Moustafa, N., Tari, Z., Mahmood, A., Anwar, A.: TON_IoT telemetry dataset: a new generation dataset of IoT and IIoT for data-driven intrusion detection systems. IEEE Access 8, 165130–165150 (2020)

    Article  Google Scholar 

  5. Ogundokun, R.O., Awotunde, J.B., Misra, S., Abikoye, O.C., Folarin, O.: Application of machine learning for ransomware detection in IoT devices. Stud. Comput. Intell. 972, 393–420 (2021)

    Article  Google Scholar 

  6. Azeez, N.A., Salaudeen, B.B., Misra, S., Damaševičius, R., Maskeliūnas, R.: Identifying phishing attacks in communication networks using URL consistency features. Int. J. Electron. Secur. Digit. Forensics 12(2), 200–213 (2020)

    Article  Google Scholar 

  7. Abikoye, O.C., et al.: Application of internet of thing and cyber physical system in Industry 4.0 smart manufacturing. In: Advances in Science, Technology and Innovation, pp. 203–217 (2021)

    Google Scholar 

  8. Ayo, F.E., Folorunso, S.O., Abayomi-Alli, A.A., Adekunle, A.O., Awotunde, J.B.: Network intrusion detection based on deep learning model optimized with rule-based hybrid feature selection. Inf. Secur. J. Global Persp. 29(6), 267–283 (2020)

    Article  Google Scholar 

  9. Azeez, N., Bada, T., Misra, S., Adewumi, A., Van der Vyver, C., Ahuja, R.: Intrusion detection and prevention systems: an updated review. In: Sharma, N., Chakrabarti, A., Balas, V.E. (eds.) Data management, analytics and innovation. AISC, vol. 1042, pp. 685–696. Springer, Singapore (2020). https://doi.org/10.1007/978-981-32-9949-8_48

    Chapter  Google Scholar 

  10. Ogundokun, R.O., Awotunde, J.B., Sadiku, P., Adeniyi, E.A., Abiodun, M., Dauda, O.I.: An enhanced intrusion detection system using particle swarm optimization feature extraction technique. Procedia Comput. Sci. 193, 504–512 (2021)

    Google Scholar 

  11. Marzano, A., et al.: The evolution of bashlite and mirai iot botnets. In: 2018 IEEE Symposium on Computers and Communications (ISCC), pp. 00813–00818. IEEE, June 2018

    Google Scholar 

  12. Chaabouni, N., Mosbah, M., Zemmari, A., Sauvignac, C., Faruki, P.: Network intrusion detection for IoT security based on learning techniques. IEEE Commun. Surv. Tutor. 21(3), 2671–2701 (2019)

    Article  Google Scholar 

  13. Mohammadi, M., Al-Fuqaha, A., Sorour, S., Guizani, M.: Deep learning for IoT big data and streaming analytics: a survey. IEEE Commun. Surv. Tutor 20(4), 2923–2960 (2018)

    Article  Google Scholar 

  14. Buczak, A.L., Guven, E.: A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun. Surv. Tutor. 18(2), 1153–1176 (2015)

    Article  Google Scholar 

  15. Moustafa, N., Hu, J., Slay, J.: A holistic review of network anomaly detection systems: a comprehensive survey. J. Netw. Comput. Appl. 128, 33–55 (2019)

    Article  Google Scholar 

  16. Gupta, R., Tanwar, S., Tyagi, S., Kumar, N.: Machine learning models for secure data analytics: a taxonomy and threat model. Comput. Commun. 153, 406–440 (2020)

    Article  Google Scholar 

  17. Moustafa, N., Slay, J.: The evaluation of Network Anomaly Detection Systems: statistical analysis of the UNSW-NB15 data set and the comparison with the KDD99 data set. Inf. Secur. J. Global Persp. 25(1–3), 18–31 (2016)

    Article  Google Scholar 

  18. Shang, W., Zeng, P., Wan, M., Li, L., An, P.: Intrusion detection algorithm based on OCSVM in the industrial control system. Secur. Commun. Netw. 9(10), 1040–1049 (2016)

    Article  Google Scholar 

  19. Maglaras, L.A., Jiang, J.: Intrusion detection in SCADA systems using machine learning techniques. In: 2014 Science and Information Conference, pp. 626–631. IEEE, August 2014

    Google Scholar 

  20. Maglaras, L.A., Jiang, J.: OCSVM model combined with k-means recursive clustering for intrusion detection in scada systems. In: 10th International Conference on Heterogeneous Networking for Quality, Reliability, Security, and Robustness, pp. 133–134. IEEE, August 2014

    Google Scholar 

  21. Linda, O., Vollmer, T., Manic, M.: Neural network-based intrusion detection system for critical infrastructures. In: 2009 International Joint Conference on Neural Networks, pp. 1827–1834. IEEE, June 2009

    Google Scholar 

  22. Hodo, E., et al.: Threat analysis of IoT networks using artificial neural network intrusion detection system. In: 2016 International Symposium on Networks, Computers and Communications (ISNCC), pp. 1–6. IEEE, May 2016

    Google Scholar 

  23. Chen, R., Liu, C.M., Chen, C.: An artificial immune-based distributed intrusion detection model for the internet of things. In: Advanced Materials Research, vol. 366, pp. 165–168. Trans Tech Publications Ltd. (2012)

    Google Scholar 

  24. Marsden, T., Moustafa, N., Sitnikova, E., Creech, G.: Probability risk identification based intrusion detection system for SCADA systems. In: Hu, J., Khalil, I., Tari, Z., Wen, S. (eds.) MONAMI 2017. LNICSSITE, vol. 235, pp. 353–363. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90775-8_28

    Chapter  Google Scholar 

  25. Kolias, C., Kambourakis, G., Stavrou, A., Gritzalis, S.: Intrusion detection in 802.11 networks: empirical evaluation of threats and a public dataset. IEEE Commun. Surv. Tutor. 18(1), 184–208 (2015)

    Google Scholar 

  26. Koroniotis, N., Moustafa, N., Sitnikova, E., Turnbull, B.: Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: BoT-IoT dataset. Future Gener. Comput. Syst. 100, 779–796 (2019)

    Article  Google Scholar 

  27. Hamza, A., Gharakheili, H.H., Benson, T.A., Sivaraman, V.: Detecting volumetric attacks on lot devices via sdn-based monitoring of mud activity. In: Proceedings of the 2019 ACM Symposium on SDN Research, pp. 36–48, April 2019

    Google Scholar 

  28. Naeem, H., Guo, B., Naeem, M.R., Ullah, F., Aldabbas, H., Javed, M.S.: Identification of malicious code variants based on image visualization. Comput. Electr. Eng. 76, 225–237 (2019)

    Article  Google Scholar 

  29. Naeem, H., Guo, B., Ullah, F., Naeem, M.R.: A cross-platform malware variant classification based on image representation. KSII Trans. Internet Inf. Syst. 13(7), 3756–3777 (2019)

    Google Scholar 

  30. Kalash, M., et al.: Malware classification with deep convolutional neural networks. In: 2018 9th IFIP International Conference on New Technologies, Mobility, and Security (NTMS), pp. 1–5. IEEE, February 2018

    Google Scholar 

  31. Kumar, R., Xiaosong, Z., Khan, R.U., Ahad, I., Kumar, J.: Malicious code detection based on image processing using deep learning. In: Proceedings of the 2018 International Conference on Computing and Artificial Intelligence, pp. 81–85, March 2018

    Google Scholar 

  32. Alharbi, A., Alosaimi, W., Alyami, H., Rauf, H.T., Damaševičius, R.: Botnet attack detection using local global best bat algorithm for industrial internet of things. Electronics 10(11), 1341 (2021)

    Article  Google Scholar 

  33. Azeez, N.A., Odufuwa, O.E., Misra, S., Oluranti, J., Damaševičius, R.: Windows PE malware detection using ensemble learning. In: Informatics, vol. 8, no. 1, p. 10. Multidisciplinary Digital Publishing Institute, March 2021

    Google Scholar 

  34. Toldinas, J., Venčkauskas, A., Damaševičius, R., Grigaliūnas, Š, Morkevičius, N., Baranauskas, E.: A novel approach for network intrusion detection using multistage deep learning image recognition. Electronics 10(15), 1854 (2021)

    Article  Google Scholar 

  35. Tang, T.A., Mhamdi, L., McLernon, D., Zaidi, S.A.R., Ghogho, M.: Deep learning approach for network intrusion detection in software-defined networking. In: 2016 International Conference on Wireless Networks and Mobile Communications (WINCOM), pp. 258–263. IEEE, October 2016

    Google Scholar 

  36. Svozil, D., Kvasnicka, V., Pospichal, J.: Introduction to multi-layer feed-forward neural networks. Chemometr. Intell. Lab. Syst. 39(1), 43–62 (1997)

    Article  Google Scholar 

  37. Ezra, P., Misra, S., Agrawal, A., Oluranti, J., Maskeliunas, R., Damasevicius, R.: Secured communication using virtual private network (VPN). In: Khanna, K., Estrela, V.V., Rodrigues, J.J.P.C. (eds.) Cyber Security and Digital Forensics. LNDECT, vol. 73, pp. 309–319. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-3961-6_27

    Chapter  Google Scholar 

  38. Gana, N., Abdulhamid, S., Misra, S., Garg, L., Ayeni, F., Azeta, A.: Optimization of support vector machine for classification of spyware using symbiotic organism search for features selection. In: Garg, L., et al. (eds.) ISMS 2020. LNNS, vol. 303, pp. 11–21. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-86223-7_2

    Chapter  Google Scholar 

  39. Tao, X., Kong, D., Wei, Y., Wang, Y.: A big network traffic data fusion approach based on Fisher and deep auto-encoder. Information 7(2), 20 (2016)

    Article  Google Scholar 

  40. Lv, Y., Duan, Y., Kang, W., Li, Z., Wang, F.Y.: Traffic flow prediction with big data: a deep learning approach. IEEE Trans. Intell. Transp. Syst. 16(2), 865–873 (2014)

    Google Scholar 

  41. Hardy, W., Chen, L., Hou, S., Ye, Y., Li, X.: Dl4MD: a deep learning framework for intelligent malware detection. In: Proceedings of the International Conference on Data Science (ICDATA), p. 61. The Steering Committee of the World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp) (2016)

    Google Scholar 

  42. Azeez, N., Misra, S., Margaret, I.A., Fernandez-Sanz, L.: Adopting automated whitelist approach for detecting phishing attacks. Comput. Secur. 108, 102328 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Bamidele Awotunde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Awotunde, J.B., Abiodun, K.M., Adeniyi, E.A., Folorunso, S.O., Jimoh, R.G. (2022). A Deep Learning-Based Intrusion Detection Technique for a Secured IoMT System. In: Misra, S., Oluranti, J., Damaševičius, R., Maskeliunas, R. (eds) Informatics and Intelligent Applications. ICIIA 2021. Communications in Computer and Information Science, vol 1547. Springer, Cham. https://doi.org/10.1007/978-3-030-95630-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95630-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95629-5

  • Online ISBN: 978-3-030-95630-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics