Skip to main content

FEDGEN Testbed: A Federated Genomics Private Cloud Infrastructure for Precision Medicine and Artificial Intelligence Research

  • Conference paper
  • First Online:
Informatics and Intelligent Applications (ICIIA 2021)

Abstract

The cloud computing space is enjoying a renaissance. Not long ago, cloud computing was confined to the wall of high-revenue companies, but in recent times a growing number of businesses, public and private institutions are turning to the cloud computing platform to reap the benefits of a self-service, scalable, and flexible infrastructure. Moreover, with the increased implementation, advantages, and popularity of artificial intelligence, the demand for computing environments to solve age-old problems such as malaria and cancer is on the rise. This paper presents the implementation of a cloud computing infrastructure, the FEDerated GENomics (FEDGEN) Testbed, to provide an adequate IT environment for cancer and malaria researchers. The cloud computing environment is built using Openstack middleware. OpenStack is deployed using Metal-As-A-Service (MAAS) and Juju. Virtual Machines (Instances) were deployed, and services (JupiterHub) were installed on the FEDGEN testbed. The built infrastructure would allow the running of models requiring high computing power and would allow for collaboration among teams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bello, S.A., et al.: Cloud computing in construction industry: use cases, benefits and challenges. Autom. Constr. 122, 103441 (2021). https://doi.org/10.1016/j.autcon.2020.103441

    Article  Google Scholar 

  2. Hua, G.-J., Tang, C.Y., Hung, C.-L., Lin, Y.-L.: Cloud computing service framework for bioinformatics tools. In: 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1509–1513, November 2015. https://doi.org/10.1109/BIBM.2015.7359899

  3. Boehmer, U.: Twenty years of public health research: inclusion of lesbian, gay, bisexual, and transgender populations. Am. J. Public Health 92(7), 1125 (2002). https://doi.org/10.2105/AJPH.92.7.1125

    Article  Google Scholar 

  4. DeVita, V.T.J., Rosenberg, S.A.: Two hundred years of cancer research. New Engl. J. Med. 366(23), 2207–2214 (2012). https://doi.org/10.1056/NEJMRA1204479. http://dx.doi.org/10.1056/NEJMra1204479

  5. Ajayi, O.O., Bagula, A.B., Ma, K.: Fourth industrial revolution for development: the relevance of cloud federation in healthcare support. IEEE Access 7, 185322–185337 (2019). https://doi.org/10.1109/ACCESS.2019.2960615

    Article  Google Scholar 

  6. Ismaeel, S., Miri, A., Chourishi, D., Reza Dibaj, S.M.: Open source cloud management platforms: a review. In: 2015 IEEE 2nd International Conference on Cyber Security and Cloud Computing, pp. 470–475, November 2015. https://doi.org/10.1109/CSCloud.2015.84

  7. Chadwick, D.W., Siu, K., Lee, C., Fouillat, Y., Germonville, D.: Adding federated identity management to openstack. J. Grid Comput. 12(1), 3–27 (2013). https://doi.org/10.1007/s10723-013-9283-2

    Article  Google Scholar 

  8. Xu, Q., Liu, J., Xian, M., Wang, H.: Construction of network scene generation system based on openstack. In: 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), pp. 2319–2322, December 2020. https://doi.org/10.1109/ICMCCE51767.2020.00501

  9. “ESFRI Roadmap 2016” (2016)

    Google Scholar 

  10. Salomoni, D., et al.: INDIGO-DataCloud: a platform to facilitate seamless access to E-infrastructures. J. Grid Comput. 16(3), 381–408 (2018). https://doi.org/10.1007/s10723-018-9453-3

    Article  Google Scholar 

  11. Kranzlmüller, D., de Lucas, J.M., Öster, P.: The European grid initiative (EGI). In: Remote Instrumentation and Virtual Laboratories, pp. 61–66 (2010). https://doi.org/10.1007/978-1-4419-5597-5_6

  12. De Almeida, A.V., Borges, M.M., Roque, L.: The European open science cloud: a new challenge for Europe. In: International Conference Proceedings Series, vol. Part F132203, October 2017. https://doi.org/10.1145/3144826.3145382

  13. Jones, B., Casu, F.: Helix Nebula - the Science Cloud: a public-private partnership to build a multidisciplinary cloud platform for data intensive science. EGUGA, pp. EGU2013–1510 (2013)

    Google Scholar 

  14. Monna, S., et al.: INDIGO-DATA CLOUD EC project: a study case applied to one of the EMSO Research Infrastructure Deep sea Observatories (2016)

    Google Scholar 

  15. EGI: EGI: advanced computing for research (2020)

    Google Scholar 

  16. Schulz, J.C.: Überlegungen zur Steuerung einer föderativen Infrastruktur am Beispiel von bwCloud. In: Kooperation von Rechenzentren, De Gruyter Oldenbourg, pp. 221–242 (2016)

    Google Scholar 

  17. Attardi, G., Barchiesi, A., Colla, A., Galeazzi, F., Marzulli, G., Reale, M.: Declarative modeling for building a cloud federation and cloud applications, pp. 1–23 (2017)

    Google Scholar 

  18. Musavi, P., Adams, B., Khomh, F.: Experience report: an empirical study of API failures in OpenStack cloud environments. In: Proceedings of the International Symposium on Software Reliability Engineering, ISSRE, pp. 424–434, December 2016. https://doi.org/10.1109/ISSRE.2016.42

  19. Rosado, T., Bernardino, J.: An overview of Openstack architecture. ACM International Conference on Proceeding Series, pp. 366–367 (2014). https://doi.org/10.1145/2628194.2628195

  20. Inukonda, M.S., Mittal, S., Kottapalli, S.H.: A solution architecture of bare-metal as a service cloud using open-source tools. Research Gate (2019)

    Google Scholar 

  21. Libri, A., Bartolini, A., Benini, L.: DiG: enabling out-of-band scalable high-resolution monitoring for data-center analytics, automation and control (extended). Clust. Comput. 24(4), 2723–2734 (2021). https://doi.org/10.1007/s10586-020-03219-7

    Article  Google Scholar 

  22. Tesfamicael, A.D., Liu, V., Caelli, W.: Design and implementation of unified communications as a service based on the open stack cloud environment. In: Proceedings - 2015 IEEE International Conference on Computational Intelligence and Communication Technology, CICT 2015, pp. 117–122, April 2015. https://doi.org/10.1109/CICT.2015.133

  23. Paladi, N., Gehrmann, C., Aslam, M., Morenius, F.: Trusted launch of virtual machine instances in public IaaS environments. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 309–323. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37682-5_22

    Chapter  Google Scholar 

  24. Basin, D., Schaller, P., Schläpfer, M.: Logging and log analysis. Appl. Inf. Secur., 69–80 (2011). https://doi.org/10.1007/978-3-642-24474-2_5

  25. Fernández, R.A.L., Hagenrud, H., Korhonen, T., Laface, E.: Jupyterhub at the ESS. An Interactive Python Computing Environment for Scientists and Engineers (2016)

    Google Scholar 

  26. Milligan, M.: Interactive HPC gateways with jupyter and jupyterhub. In: ACM International Conference Proceeding Series, vol. Part F128771, July 2017. https://doi.org/10.1145/3093338.3104159

  27. Johnson, S., et al.: A framework of e-learning education clouds to efficiency and personalization. In: Proceedings - 2016 3rd International Conference on Information Science and Control Engineering, ICISCE 2016, pp. 26–30, October 2016. https://doi.org/10.1109/ICISCE.2016.17

  28. Madhav, N., Joseph, M.K.: Cloud-based virtual computing labs for HEIs. In: 2016 IEEE International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies, EmergiTech 2016, pp. 373–377, November 2016. https://doi.org/10.1109/EMERGITECH.2016.7737369

Download references

Acknowledgements

The authors acknowledge the Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE) domiciled at Covenant University for funding this work with the ACE Impact grant from World Bank through the National University Commission, Nigeria. The Covenant University Center for Research, Innovation and Discovery (CUCRID), Covenant University is also acknowledged for providing fund towards the publication of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Adetiba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adetiba, E. et al. (2022). FEDGEN Testbed: A Federated Genomics Private Cloud Infrastructure for Precision Medicine and Artificial Intelligence Research. In: Misra, S., Oluranti, J., Damaševičius, R., Maskeliunas, R. (eds) Informatics and Intelligent Applications. ICIIA 2021. Communications in Computer and Information Science, vol 1547. Springer, Cham. https://doi.org/10.1007/978-3-030-95630-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95630-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95629-5

  • Online ISBN: 978-3-030-95630-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics