Abstract
This paper presents a novel approach for robust off-road navigation based on deep convolutional neural networks which are combined with OpenStreetMap data to perform a forest path-based local localization approach. Corresponding near features are used to integrate navigation relevant world knowledge into a local multi-feature map. A behavior-based controller adapts the robot’s trajectory based on available features and its detection quality. The approach was tested in the Rhineland-Palatinate forest. Different forest way detection setups were evaluated and are discussed in detail. Additionally, the autonomous mobile robot GatorX855D followed a forest trail using the resulting multi-feature map.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Rasmussen, C.: Grouping dominant orientations for ill-structured road following. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, CVPR 2004, vol. 1, pp. I-470–I-477, June 2004
Kong, H., Audibert, J.Y., Ponce, J.: General road detection from a single image. IEEE Trans. Image Process. 19(8), 2211–2220 (2010)
Thrun, S., et al.: Winning the DARPA grand challenge. J. Field Robot. 23(9), 661–692 (2006)
Hadsell, R., Erkan, A., Sermanet, P., Scoffier, M., Muller, U., LeCun, Y.: Deep belief net learning in a long-range vision system for autonomous off-road driving. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 628–633, September 2008
Fleischmann, P., Kneip, J., Berns, K.: An adaptive detection approach for autonomous forest path following using stereo vision. In: 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV), pp. 1–6, November 2016
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation, CoRR, vol. abs/1411.4038 (2014)
Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions, CoRR, vol. abs/1511.07122 (2015)
Dumoulin, V., Visin, F.: A guide to convolution arithmetic for deep learning, arXiv preprint arXiv:1603.07285 (2016)
Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation, CoRR, vol. abs/1511.00561 (2015)
Valada, A., Vertens, J., Dhall, A., Burgard, W.: Adapnet: adaptive semantic segmentation in adverse environmental conditions. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 4644–4651, May 2017
Giusti, A., et al.: A machine learning approach to visual perception of forest trails for mobile robots. IEEE Robot. Autom. Lett. 1(2), 661–667 (2016)
Smolyanskiy, N., Kamenev, A., Smith, J., Birchfield, S.: Toward low-flying autonomous MAV trail navigation using deep neural networks for environmental awareness, pp. 4241–4247, September 2017
Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121. IEEE (1985)
Moravec, H.: Robot spatial perceptionby stereoscopic vision and 3d evidence grids, Perception (1996)
Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: Octomap: an efficient probabilistic 3d mapping framework based on octrees. Auton. Robots 34(3), 189–206 (2013)
Fong, E.H., Adams, W., Crabbe, F.L., Schultz, A.C.: Representing a 3-d environment with a 2 1/2-d map structure. In: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453), vol. 3, pp. 2986–2991. IEEE (2003)
Triebel, R., Pfaff, P., Burgard, W.: Multi-level surface maps for outdoor terrain mapping and loop closing. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2276–2282. IEEE (2006)
Schafer, B.-H., Armbrust, C., Fohst, T., Berns, K.: The application of design schemata in off-road robotics. IEEE Intell. Transp. Syst. Mag. 5(1), 4–27 (2013)
Wolf, P., Ropertz, T., Oswald, M., Berns, K.: Local behavior-based navigation in rough off-road scenarios based on vehicle kinematics. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, pp. 719–724, 21–25 May 2018
Fankhauser, P., Hutter, M.: A universal grid map library: implementation and use case for rough terrain navigation. In: Koubaa, A. (ed.) Robot Operating System (ROS). SCI, vol. 625, pp. 99–120. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26054-9_5
Jaspers, H., Himmelsbach, M., Wuensche, H.-J.: Multi-modal local terrain maps from vision and lidar. In: 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 1119–1125. IEEE (2017)
Ropertz, T., Wolf, P., Berns, K.: Quality-based behavior-based control for autonomous robots in rough environments. In: Gusikhin, O., Madani, K. (eds.) Proceedings of the 14th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2017), vol. 1, Madrid, Spain, SCITEPRESS – Science and Technology Publications, Lda, pp. 513–524, 26–28 July 2017. iSBN: 978-989-758-263-9
Proetzsch, M.: Development process for complex behavior-based robot control systems, Ph.D. dissertation, Robotics Research Lab, University of Kaiserslautern, München, Germany, June 2010
Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Rodríguez, J. G.: A review on deep learning techniques applied to semantic segmentation, CoRR, vol. abs/1704.06857 (2017)
Valada, A., Oliveira, G., Brox, T., Burgard, W.: Deep multispectral semantic scene understanding of forested environments using multimodal fusion. In: The 2016 International Symposium on Experimental Robotics (ISER 2016), Tokyo, Japan, October 2016
Fleischmann, P., Berns, K.: A stereo vision based obstacle detection system for agricultural applications. In: Proceedings of Field and Service Robotics (FSR), Toronto, Canada, 24–26 June 2015
Wolf, P., Ropertz, T., Berns, K., Thul, M., Wetzel, P., Vogt, A.: Behavior-based control for safe and robust navigation of an unimog in off-road environments. In: Berns, K., et al. (eds.) Commercial Vehicle Technology 2018. Proceedings of the 5th Commercial Vehicle Technology Symposium - CVT 2018, Commercial Vehicle Alliance Kaiserslautern (CVA), Kaiserslautern, 13–15 March 2018, pp. 63–76. Springer, Wiesbaden (2018). ISBN 978-3-658-21299-5. https://doi.org/10.1007/978-3-658-21300-8
Haklay, M., Weber, P.: Openstreetmap: user-generated street maps. In: Haklay, M., Weber, P. (ed) OpenStreetMap: user-generated street maps. IEEE Pervasive Computing 7(4), 12–18 (2008). ISSN 15361268
Fleischmann, P., Pfister, T., Oswald, M., Berns, K.: Using openstreetmap for autonomous mobile robot navigation. In: Proceedings of the 14th International Conference on Intelligent Autonomous Systems (IAS-14), Shanghai, China, best Conference Paper Award - Final List, July 3–7 2016
Helbich, M., Amelunxen, C.: Comparative spatial analysis of positional accuracy of openstreetmap and proprietary geodata, Angewandte Geoinformatik, January 2012
El-Ashmawy, K.: Testing the positional accuracy of openstreetmap data for mapping applications. Geodesy Cartography 42, 25–30 (2016)
Hundelshausen, F., Himmelsbach, M., Hecker, F., Mueller, A., Wuensche, H.J.: Driving with tentacles - integral structures for sensing and motion. In: Buehler, M., Iagnemma, K., Singh, S. (eds.) The DARPA Urban Challenge. Springer Tracts in Advanced Robotics, Springer, Heidelberg, vol. 56, pp. 393-440 (2009). https://doi.org/10.1007/978-3-642-03991-1_10
Reichardt, M., Föhst, T., Berns, K.: Introducing FINROC: A Convenient Real-time Framework for Robotics based on a Systematic Design Approach. Department of Computer Science, University of Kaiserslautern, Kaiserslautern, Germany, Technical Report, Robotics Research Lab (2012)
Wolf, P., Ropertz, T., Feldmann, P., Berns, K.: Combining onthologies and behavior-based control for aware navigation in challenging off-road environments. In: Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2019), INSTICC, SCITEPRESS - Science and Technology Publications, Lda, Prague, Czech Republic, pp. 135–146, 29–31 July 2019. https://doi.org/10.5220/0007934301350146 ISBN: 9789897583803
Wolf, P., Vierling, A., Ropertz, T., Berns, K.: Advanced scene aware navigation for the heavy duty off-road vehicle unimog. In: IOP Conference Series: Materials Science and Engineering, vol. 997, p. 012093, December 2020. https://doi.org/10.1088/1757-899x/997/1/012093
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wolf, P., Vierling, A., Ropertz, T., Velden, S., Guzman, C., Berns, K. (2022). Autonomous Off-Road Navigation Using Near-Feature-Based World Knowledge Incorporation on the Example of Forest Path Detection. In: Ang Jr, M.H., Asama, H., Lin, W., Foong, S. (eds) Intelligent Autonomous Systems 16. IAS 2021. Lecture Notes in Networks and Systems, vol 412. Springer, Cham. https://doi.org/10.1007/978-3-030-95892-3_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-95892-3_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-95891-6
Online ISBN: 978-3-030-95892-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)