Skip to main content

Fault Detection from Bend Test Images of Welding Using Faster R-CNN

  • Conference paper
  • First Online:
Advances in Internet, Data & Web Technologies (EIDWT 2022)

Abstract

The human visual inspection to find defects from welding joints is very tough. The examiners have to inspect many bend test fragments carefully. The present study aims to build an automatic detection system capable of finding cracks from bend test fragments. This paper describes the automatic detection method employing Faster R-CNN to detect crack regions. First, we introduce our achievement and explain the focused issue. Second, the structure of the proposed Faster R-CNN is explained, and then the present paper shows the experiment of automatic detection using web-camera working in real-time. Finally, conclusions and future works are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asai, S., Ogawa, T., Takebayashi, H.: Visualization and digitation of welder skill for education and training. Weld. World 56, 26–34 (2012)

    Article  Google Scholar 

  2. Byrd, A.P., Stone, R.T., Anderson, R.G., Woltjer, K.: The use of virtual welding simulators to evaluate experimental welders. Weld. J. 94(12), 389–395 (2015)

    Google Scholar 

  3. Hino, T., et al.: Visualization of gas tungsten arc welding skill using brightness map of backside weld pool. Trans. Mat. Res. Soc. Jpn. 44(5), 181–186 (2019)

    Article  Google Scholar 

  4. Niles, R.W., Jackson, C.E.: Weld thermal efficiency of the GTAW process. Weld. J. 54, 25–32 (1975)

    Google Scholar 

  5. Kato, S., Hino, T., Yoshikawa, N.: Fundamental study on evaluation system of beginner’s welding using CNN. In: Barolli, L., Hellinckx, P., Natwichai, J. (eds.) 3PGCIC 2019. LNNS, vol. 96, pp. 821–827. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33509-0_77

  6. Kato, S., Hino, T., Kumeno, H., Kagawa, T., Nobuhara, H.: Automatic detection of beginner’s welding joint. In: Proceedings of 2020 Joint 11th International Conference on Soft Computing and Intelligent Systems and 21st International Symposium on Advanced Intelligent Systems, pp. 465–467 (2020)

    Google Scholar 

  7. Kato, S., et al.: Evaluation for angular distortion of welding plate. In: Arai, K. (eds.) IntelliSys 2021. LNNS, vol. 294, pp. 344–354. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-82193-7_23

  8. The Japanese Welding Engineering Society. http://www.jwes.or.jp/en/qualification.html. Accessed 3 Sept 2021

  9. Wan, Y., Jiang, W., Li, H.: Cold bending effect on residual stress, microstructure and mechanical properties of Type 316L stainless steel welded joint. Eng. Fail. Anal. 117, 104825 (2020)

    Google Scholar 

  10. Kato, S., Hino, T., Kume, S., Nobuhara, H.: Crack detection from weld bend test images using R-CNN. In: Barolli, L., (eds.) 3PGCIC 2021. LNNS, vol. 343, pp. 289–298. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-89899-1_31

  11. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR 2014 Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  12. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28 (2015)

    Google Scholar 

  13. Park, J.-K., , An, W.-H., Kang, D.-J.: Convolutional neural network based surface inspection system for non-patterned welding defects. Int. J. Precis. Eng. Manuf. 20(3), 363–374 (2019)

    Google Scholar 

  14. Dung, C.V., Sekiya, H., Hirano, S., Okatani, T., Miki, C.: A vision-based method for crack detection in gusset plate welded joints of steel bridges using deep convolutional neural networks. Autom. Constr. 102, 217–229 (2019)

    Google Scholar 

  15. Zhang, Z., Wen, G., Chen, S.: Weld image deep learning-based on-line defects detection using convolutional neural networks for Al alloy in robotic arc welding. J. Manuf. Process. 45, 208–216 (2019)

    Article  Google Scholar 

  16. Dai, W., et al.: Deep learning assisted vision inspection of resistance spot welds. J. Manuf. Process. 62, 262–274 (2021)

    Article  Google Scholar 

  17. Abdelkader, R., Ramou, N., Khorchef, M., Chetih, N., Boutiche, Y.: Segmentation of x-ray image for welding defects detection using an improved Chan-Vese model. Mater. Today Proc. 42, Part 5, 2963–2967 (2021)

    Google Scholar 

  18. Zhu, H., Ge, W., Liu, Z.: Deep learning-based classification of weld surface defects. Appl. Sci. 9(16), 3312 (2019)

    Article  Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  20. MathWorks: https://jp.mathworks.com/help/deeplearning/ug/investigate-network-predictions-using-class-activation-mapping.html?lang=en. Accessed 8 Sept 2021

  21. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: IEEE International Conference on Computer Vision (ICCV), pp. 618–626 (2017)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Crimson Interactive Pvt. Ltd. (Ulatus) - www.ulatus.jp for their assistance in manuscript translation and editing, and Ueno in MathWorks for technical advice. This work was supported by a Grant-in-Aid from JWES (The Japan Welding Engineering Society).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Kato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kato, S., Hino, T., Kumeno, H., Kume, S., Kagawa, T., Nobuhara, H. (2022). Fault Detection from Bend Test Images of Welding Using Faster R-CNN. In: Barolli, L., Kulla, E., Ikeda, M. (eds) Advances in Internet, Data & Web Technologies. EIDWT 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 118. Springer, Cham. https://doi.org/10.1007/978-3-030-95903-6_21

Download citation

Publish with us

Policies and ethics