Skip to main content

Naïve Bayes Based Classifier for Credit Card Fraud Discovery

  • Conference paper
  • First Online:
Information Systems (EMCIS 2021)

Abstract

As financial services and operations expand, financial fraud is on the rise. Despite the use of preventative and security measures to reduce monetary fraud, criminals are constantly acquiring and developing new ways to circumvent fraud detection systems, posing a challenge to quantitative methods and predictive approaches. As a result, new methodologies must be researched and tested to leverage the insights gained from the study to assist further incorrect fraud forecasting and the establishment of fraud discovery schemes with extra measures to alleviate distrustful events. Naïve Bayes (NB) is a significant Machine Learning (ML) classifier that is not yet explored in the literature, unlike the use of common ML techniques like Decision Tree (DT), Random Forest (RF), Artificial Neural Network (ANN), and the likes. This paper, therefore, explores the use of a technique yet to be employed for credit card fraud detection (CCFD) namely Naïve Bayes. The classifier was compared using a confusion matrix for performance matrices like accuracy, precision, recall, f-measure, and ROC-AUC. It was discovered that NB outperformed most of the ML classifiers employed in state-of-the-art compared with an accuracy of 97.99%, recall of 98.02%, the precision of 99.97%, f-measure 98.98%, and FPR of 0.1971.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Abbreviation :

Meaning

ML:

Machine Learning

DT:

Decision Tree

KNN:

K-Nearest Neighbor

CC:

Credit Card

CCF:

Credit Card Fraud

FPR:

False Positive Rate

TP:

True Positive

TN:

True Negative

FP:

False Positive

FN:

False Negative

FL:

Fuzzy Logic

LR:

Logistic Regression

DM:

Data Mining

References

  1. Bahnsen, A.C., Aouada, D., Stojanovic, A., Ottersten, B.E.: Feature engineering strategies for credit card fraud detection. Expert Syst. Appl. 51, 134–142 (2016). https://doi.org/10.1016/j.eswa.2015.12.030

    Article  Google Scholar 

  2. Bhattacharyya, S., Jha, S., Tharakunnel, K., Westland, J.C.: Data mining for credit card fraud: a comparative study. Decis. Support Syst. 50, 602–613 (2011). https://doi.org/10.1016/j.dss.2010.08.008. arXiv:1009.6119

    Article  Google Scholar 

  3. Chan, P.K., Fan, W., Prodromidis, A.L., Stolfo, S.J.: Distributed data mining in credit card fraud detection. IEEE Intell. Syst. 14, 67–74 (1999)

    Article  Google Scholar 

  4. Chen, R.C., Shu-Ting, L., Shiue-Shiun, L.: Detecting credit card fraud by using support vector machines and neural networks. http://www.medwelljournals.com/abstract/?doi=ijscomp.2006.30.35

  5. Dal Pozzolo, A., Boracchi, G., Caelen, O., Alippi, C., Bontempi, G.: Credit card fraud detection: realistic modeling and a novel learning strategy. IEEE Trans. Neural Netw. Learn. Syst. 29, 3784–3797 (2018). https://doi.org/10.1109/TNNLS.2017.2736643

    Article  Google Scholar 

  6. Elshaar, S., Sadaoui, S.: Semi-supervised classification of fraud data in commercial auctions. Appl. Artif. Intell. 34, 47–63 (2020). https://doi.org/10.1080/08839514.2019.1691341

    Article  Google Scholar 

  7. Eshghi, A., Kargari, M.: Introducing a new method for the fusion of fraud evidence in banking transactions with regard to uncertainty. Expert Syst. Appl. 121, 382–392 (2019). https://www.sciencedirect.com/science/article/abs/pii/S0957417418307590. https://doi.org/10.1016/J.ESWA.2018.11.039

  8. Jha, S., Guillen, M., Christopher Westland, J.: Employing transaction aggregation strategy to detect credit card fraud. Expert Syst. Appl. 39, 12650–12657 (2012). https://doi.org/10.1016/j.eswa.2012.05.018

    Article  Google Scholar 

  9. Wu, Y., Xu, Y., Li, J.: Feature construction for fraudulent credit card cashout detection. Decis. Support Syst. 127, 113155 (2019). https://doi.org/10.1016/j.dss.2019.113155

    Article  Google Scholar 

  10. PointPredictive: Estimating auto lending fraud losses for 2017. Technical Report. PointPredictive (2017a)

    Google Scholar 

  11. Bloomberg: Auto loan fraud soars in a parallel to the housing bubble (2017). https://www.bloomberg.com/news/articles/2017-05-10/auto-loan-fraud-issoaring-in-a-parallel-to-the-housing-bubble

  12. Abdallah, A., Maarof, M.A., Zainal, A.: Fraud detection system: a survey. J. Netw. Comput. Appl. 68, 90–113 (2016). https://doi.org/10.1016/j.jnca.2016.04.007

    Article  Google Scholar 

  13. ACFE: Report to the Nations on occupational fraud and abuse. Technical Report. Association of Certified Fraud Examiners (2016)

    Google Scholar 

  14. Kirkos, E., Spathis, C., Manolopoulos, Y.: Data mining techniques for the detection of fraudulent financial statements. Expert Syst. Appl. 32, 995–1003 (2007). https://doi.org/10.1016/j.eswa.2006.02.016

    Article  Google Scholar 

  15. Sahin, Y., Bulkan, S., Duman, E.: A cost-sensitive decision tree approach for fraud detection. Expert Syst. Appl. 40, 5916–5923 (2013). https://doi.org/10.1016/j.eswa.2013.05.021

    Article  Google Scholar 

  16. Wheeler, R., Aitken, S.: Multiple algorithms for fraud detection. Knowl.-Based Syst. 13, 93–99 (2000). https://doi.org/10.1016/S0950-7051(00)00050-2

    Article  Google Scholar 

  17. Gómez, J.A., Arévalo, J., Paredes, R., Nin, J.: End-to-end neural network architecture for fraud scoring in card payments. Pattern Recogn. Lett. 105, 175–181 (2017). https://doi.org/10.1016/j.patrec.2017.08.024

    Article  Google Scholar 

  18. Sahin, Y., Duman, E.: Detecting credit card fraud by decision trees and support vector machines. In International multiconference of engineers and computer scientists, pp. 442–447 (2011). http://www.iaeng.org/publication/IMECS2011/, https://doi.org/10.1016/j.dss.2015.04.013, arXiv:1009.6119

  19. Whitrow, C., Hand, D.J., Juszczak, P., Weston, D., Adams, N.M.: Transaction aggregation as a strategy for credit card fraud detection. Data Min. Knowl. Disc. 18, 30–55 (2009). https://doi.org/10.1007/s10618-008-0116-z

    Article  MathSciNet  Google Scholar 

  20. Quah, J.T.S., Sriganesh, M.: Real-time credit card fraud detection using computational intelligence. Expert Syst. Appl. 35, 1721–1732 (2008). https://doi.org/10.1016/j.eswa.2007.08.093

    Article  Google Scholar 

  21. Vergara, L., Salazar, A., Belda, J., Safont, G., Moral, S., Iglesias, S.: Signal processing on graphs for improving automatic credit card fraud detection. In: Proceedings - International Carnahan Conference on Security Technology, pp. 1–6 (2017). https://doi.org/10.1109/CCST.2017.8167820

  22. Adewumi, A.O., Akinyelu, A.A.: A survey of machine-learning and nature-inspired based credit card fraud detection techniques. Int. J. Syst. Assu.r Eng. Manage. 8, 937–953 (2017). https://doi.org/10.1007/s13198-016-0551-y

    Article  Google Scholar 

  23. Lu, Q., Ju, C.: Research on credit card fraud detection model based on class weighted support vector machine. J. Convergence Inf. Technol. 6, 62–68 (2011). http://www.aicit.org/jcit/ppl/05-JCIT2-870048.pdf, https://doi.org/10.4156/jcit.vol6

  24. Thabtah, F., Hammoud, S., Kamalov, F., Gonsalves, A.: Data imbalance in classification: experimental evaluation. Inf. Sci. 513, 429–441 (2020). https://doi.org/10.1016/j.ins.2019.11.004

    Article  MathSciNet  Google Scholar 

  25. Mahmoudi, N., Duman, E.: Detecting credit card fraud by modified fisher discriminant analysis. Expert Syst. Appl. 42, 2510–2516 (2014). http://www.scopus.com/inward/record.url?eid=2-s2.0-84912535379&partnerID=tZOtx3y1, https://doi.org/10.1016/j.eswa.2014.10.037

  26. Carneiro, N., Figueira, G., Costa, M.: A data mining-based system for creditcard fraud detection in e-tail. Decis. Support Syst. 95, 91–101 (2017). https://doi.org/10.1016/j.dss.2017.01.002

    Article  Google Scholar 

  27. Van Vlasselaer, V., et al.: APATE: A novel approach for automated credit card transaction fraud detection using network-based extensions. Decis. Support Syst. 75, 38–48 (2015). https://doi.org/10.1016/j.dss.2015.04.013

    Article  Google Scholar 

  28. Baesens, B., Van Vlasselaer, V., Verbeke, W.: Fraud analytics using descriptive, predictive, and social network techniques. Wiley (2015). https://doi.org/10.1017/CBO9781107415324.004, arXiv: arXiv:1011.1669v3

  29. Dal Pozzolo, A., Caelen, O., Le Borgne, Y.A., Waterschoot, S., Bontempi, G.: Learned lessons in credit card fraud detection from a practitioner perspective. Expert Syst. Appl., 41, 4915–4928 (2014). https://doi.org/10.1016/j.eswa.2014.02.026, arXiv: z0024

  30. Hartmann-Wendels, T., Mählmann, T., Versen, T.: Determinants of banks’ risk exposure to new account fraud - evidence from Germany. J. Bank. Finance 33, 347–357 (2009). https://doi.org/10.1016/j.jbankfin.2008.08.005

    Article  Google Scholar 

  31. Lim, W.Y., Sachan, A., Thing, V.: Conditional weighted transaction aggregation for credit card fraud detection. IFIP Adv. Inf. Commun. Technol. 433, 3–16 (2014). http://www.scopus.com/inward/record.url?eid=2-s2.0-84911085381&partnerID=tZOtx3y1

  32. Carcillo, F., Dal Pozzolo, A., Le Borgne, Y.A., Caelen, O., Mazzer, Y., Bontempi, G.: SCARFF: a scalable framework for streaming credit card fraud detection with spark. Inf. Fusion 41, 182–194 (2018). https://doi.org/10.1016/j.inffus.2017.09.005

    Article  Google Scholar 

  33. Wang, Y., Xu, W.: Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud. Decis. Support Syst. 105, 87–95 (2018). https://doi.org/10.1016/j.dss.2017.11.001

    Article  Google Scholar 

  34. Wong, M.L., Seng, K., Wong, P.K.: Cost-sensitive ensemble of stacked denoising autoencoders for class imbalance problems in business domain. Expert Syst. Appl. 141, 112918 (2020). https://doi.org/10.1016/j.eswa.2019.112918

    Article  Google Scholar 

  35. Kim, E., et al.: Champion-challenger analysis for credit card fraud detection: Hybrid ensemble and deep learning. Expert Syst. Appl. 128, 214–224 (2019). https://linkinghub.elsevier.com/retrieve/pii/S0957417419302167, https://doi.org/10.1016/j.eswa.2019.03.042

  36. Bagga, S., Goyal, A., Gupta, N., Goyal, A.: Credit card fraud detection using pipeling and ensemble learning. Procedia Comput. Sci. 173, 104–112 (2020)

    Article  Google Scholar 

  37. Arowolo, M.O., Ogundokun, R.O., Misra, S., Kadri, A.F., Aduragba, T.O.: Machine learning approach using KPCA-SVMs for predicting COVID-19. In: Garg, L., Chakraborty, C., Mahmoudi, S., Sohmen, V.S. (eds.) Healthcare Informatics for Fighting COVID-19 and Future Epidemics. EICC, pp. 193–209. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-72752-9_10

    Chapter  Google Scholar 

  38. Mandrekar, J.N.: Receiver operating characteristic curve in diagnostic test assessment. J. Thorac. Oncol. 5(9), 1315–1316 (2010)

    Article  Google Scholar 

  39. Taha, A.A., Malebary, S.J.: An intelligent approach to credit card fraud detection using an optimized light gradient boosting machine. IEEE Access 8, 25579–25587 (2020)

    Article  Google Scholar 

  40. Rtayli, N., Enneya, N.: Enhanced credit card fraud detection based on SVM-recursive feature elimination and hyper-parameters optimization. J. Inf. Secur. Appl. 55, 102596 (2020)

    Google Scholar 

  41. Rai, A.K., Dwivedi, R.K.: Fraud detection in credit card data using unsupervised machine learning-based scheme. In: 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC), pp. 421–426. IEEE (2020)

    Google Scholar 

  42. Ogundokun, R.O., Misra, S., Ogundokun, O.E., Oluranti, J., Maskeliunas, R.: Machine learning classification based techniques for fraud discovery in credit card datasets. In: Florez, H., Pollo-Cattaneo, M.F. (eds.) ICAI 2021. CCIS, vol. 1455, pp. 26–38. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89654-6_3

    Chapter  Google Scholar 

  43. Onah, J.O., Abdulhamid, S.M., Misra, S., Sharma, M.M., Rana, N., Oluranti, J.: Genetic search wrapper-based naïve bayes anomaly detection model for fog computing environment. In: Abraham, A., Piuri, V., Gandhi, N., Siarry, P., Kaklauskas, A., Madureira, A. (eds.) ISDA 2020. AISC, vol. 1351, pp. 1371–1382. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71187-0_127

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roseline Oluwaseun Ogundokun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ogundokun, R.O., Misra, S., Fatigun, O.J., Adeniyi, J.K. (2022). Naïve Bayes Based Classifier for Credit Card Fraud Discovery. In: Themistocleous, M., Papadaki, M. (eds) Information Systems. EMCIS 2021. Lecture Notes in Business Information Processing, vol 437. Springer, Cham. https://doi.org/10.1007/978-3-030-95947-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95947-0_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95946-3

  • Online ISBN: 978-3-030-95947-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics