Abstract
Chaos is a deterministic phenomenon that emerges under certain conditions in a nonlinear dynamic system when the trajectories of the state variables become periodic and highly sensitive to the initial conditions. Chaotic systems are flexible, and it has been shown that communication is possible using parametric feedback control. Chaos synchronization is the basis of using chaos in communication. Chaos synchronization refers to the characteristic that the trajectories of two identical chaotic systems, each with its own unique initial conditions, converge over time.
In this paper, data extraction is performed on different chaotic equations implemented as circuits. Lorenz is the base system implemented in this paper, followed by Modified Lorenz, Chua’s, L\(\ddot{u}\)’s, and R\(\ddot{o}\)ssler systems. Additionally, more recent systems (e.g., SprottD Attractor) are included in the data extraction process. The robust system implementations provide an alternative to software chaos and architectures, and will further reduce the required power and area. These chaotic systems serve as alternatives for quantum era computing, which will cause synchronous and asynchronous techniques to fail. The data extracted organize different modes of chaos implementation based on the ease of their fabrication in integrated circuits. Performance metrics including power consumption, area, design load, noise, and robustness to process and temperature variant are extracted for each system to demonstrate a figure of merit. The figure of merit showcases chaos equations fitting to be implemented as a transmitter/receiver with a mode of chaotic ciphering in communication.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cuomo, K.M., Oppenheim, A.V., Strogatz, S.H.: Synchronization of Lorenz-based chaotic circuits with applications to communications. IEEE Trans. Circ. Syst. II Analog Digital Signal Process. 40(10), 626–633 (1993)
Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaotic dynamical systems. In Chaos: Soviet-American Perspective on Nonlinear Science, pp. 153–172. American Institute of Physics (1990)
Benioff, P.: The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by turing machines. J. Stat. Phys. 22(5), 563–591 (1980)
Arute, F., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)
Kalai, G.: The argument against quantum computers. In: Quantum, Probability, Logic, pp. 399–422 (2020)
Smith, F.L., III.: Quantum technology hype and national security. Secur. Dialogue 5(1), 0967010620904922 (2020)
Elwakil, A.S., Kennedy, M.P.: Construction of classes of circuit-independent chaotic oscillators using passive-only nonlinear devices. IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 48(3), 289–307 (2001)
Delgado-Restituto, M., Rodriguez-Vazquez, A.: A CMOS analog chaotic oscillator for signal encryption. In: ESSCIRC 1993: Nineteenth European Solid-State Circuits Conference, vol. 1, pp. 110–113. IEEE (1993)
Delgado-Restituto, M., Rodriguez-Vazquez, A., Linan, M.: A modulator/demodulator CMOS IC for chaotic encryption of audio. In: ESSCIRC1995: Twenty-First European Solid-State Circuits Conference, pp. 170–173. IEEE (1995)
Elwakil, A.S., Salama, K.N., Kennedy, M.P.: An equation for generating chaos and its monolithic implementation. Int. J. Bifurcat. Chaos 12(12), 2885–2895 (2002)
Trejo-Guerra, R., Tlelo-Cuautle, E., Cruz-Hernández, C., SÁnchez-LÓpez, C.: Chaotic communication system using Chua’s oscillators realized with CCII+S. Int. J. Bifurcat. Chaos 19(12), 4217–4226 (2009)
Sánchez-López, C., Trejo-Guerra, R., Munoz-Pacheco, J., Tlelo-Cuautle, E.: N-scroll chaotic attractors from saturated function series employing CCII+S. Nonlinear Dyn. 61(1–2), 331–341 (2010)
Trejo-Guerra, R., et al.: Integrated circuit generating 3-and 5-scroll attractors. Commun. Nonlinear Sci. Numer. Simul. 17(11), 4328–4335 (2012)
Trejo-Guerra, R., Tlelo-Cuautle, E., Jiménez-Fuentes, M., Muñoz-Pacheco, J.M., Sánchez-López, C.: Multiscroll floating gate-based integrated chaotic oscillator. Int. J. Circuit Theory Appl. 41(8), 831–843 (2013)
Gonzalez, O.A., Han, G., De Gyvez, J.P., et al.: CMOS cryptosystem using a Lorenz chaotic oscillator. In: ISCAS 1999, Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No. 99CH36349), vol. 5, pp. 442–445. IEEE (1999)
Wu, Y.-L., Yang, C.-H., Li, Y.-S., Wu, C.-H.: Nonlinear dynamic analysis and chip implementation of a new chaotic oscillator. In: 2015 IEEE 12th International Conference on Networking, Sensing and Control, pp. 554–559. IEEE (2015)
Xiong, L., Lu, Y.-J., Zhang, Y.-F., Zhang, X.-G., Gupta, P.: Design and hardware implementation of a new chaotic secure communication technique. PLoS One 11(8), e0158348 (2016)
Liang, C., Zhang, Q., Ma, J., Li, K.: Research on neural network chaotic encryption algorithm in wireless network security communication. EURASIP J. Wirel. Commun. Netw. 2019(1), 1–10 (2019). https://doi.org/10.1186/s13638-019-1476-3
Zhang, L.: Artificial neural network model design and topology analysis for FPGA implementation of Lorenz chaotic generator. In: IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–4. IEEE (2017)
Tuna, M., Alçın, M., Koyuncu, İ, Fidan, C.B., Pehlivan, İ: High speed FPGA-based chaotic oscillator design. Microprocess. Microsyst. 66, 72–80 (2019)
Gonzales, O.A., Han, G., De Gyvez, J.P., Sánchez-Sinencio, E.: Lorenz-based chaotic cryptosystem: a monolithic implementation. IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 47(8), 1243–1247 (2000)
Yu, S., Lü, J., Tang, W.K., Chen, G.: A general multiscroll Lorenz system family and its realization via digital signal processors. Chaos Interdisc. J. Nonlinear Sci. 16(3), 033126 (2006)
Brown, D., Hedayatipour, A., Majumder, M.B., Rose, G.S., McFarlane, N., Materassi, D.: Practical realisation of a return map immune Lorenz-based chaotic stream cipher in circuitry. IET Comput. Digital Tech. 12(6), 297–305 (2018)
Özoǧuz, S., Elwakil, A.S., Kennedy, M.P.: Experimental verification of the butterfly attractor in a modified Lorenz system. Int. J. Bifurcat. Chaos 12(07), 1627–1632 (2002)
Radwan, A., Soliman, A., El-Sedeek, A.: MOS realization of the modified Lorenz chaotic system. Chaos, Solitons Fractals 21(3), 553–561 (2004)
Wu, Y.-L., Yang, C.-H., Wu, C.-H.: Design of initial value control for modified Lorenz-Stenflo system. Math. Probl. Eng. 2017, 8424139 (2017)
Zhang, F., Chen, R., Chen, X.: Analysis of a generalized Lorenz-Stenflo equation. Complexity 2017, 7520590 (2017)
Butusov, D.N., Karimov, T.I., Lizunova, I.A., Soldatkina, A.A., Popova, E.N.: Synchronization of analog and discrete rössler chaotic systems. In: IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pp. 265–270. IEEE (2017)
Liao, T.-L., Chen, H.-C., Peng, C.-Y., Hou, Y.-Y.: Chaos-based secure communications in biomedical information application. Electronics 10(3), 359 (2021)
Wei, Z.: Dynamical behaviors of a chaotic system with no equilibria. Phys. Lett. A 376(2), 102–108 (2011)
Baruah, B., Saikia, M.: An FPGA implementation of chaos based image encryption and its performance analysis. IJCSN Int. J. Comput. Sci. Netw. 5(5), 712–720 (2016)
Lopez-Hernandez, J., Diaz-Mendez, A., Vazquez-Medina, R., Alejos-Palomares, R.: Analog current-mode implementation of a logistic-map based chaos generator. In: 52nd IEEE International Midwest Symposium on Circuits and Systems, pp. 812–814. IEEE (2009)
Farfan-Pelaez, A., Del-Moral-Hernández, E., Navarro, J., Van Noije, W.: A CMOS implementation of the sine-circle map. In: 48th Midwest Symposium on Circuits and Systems, pp. 1502–1505. IEEE (2005)
Callegari, S., Setti, G., Langlois, P.J.: A CMOS tailed tent map for the generation of uniformly distributed chaotic sequences. In: IEEE International Symposium on Circuits and Systems (ISCAS), vol. 2, pp. 781–784. IEEE (1997)
Dudek, P., Juncu, V.: Compact discrete-time chaos generator circuit. Electron. Lett. 39(20), 1431–1432 (2003)
Juncu, V., Rafiei-Naeini, M., Dudek, P.: Integrated circuit implementation of a compact discrete-time chaos generator. Analog Integr. Circ. Sig. Process 46(3), 275–280 (2006)
Kia, B., Mobley, K., Ditto, W.L.: An integrated circuit design for a dynamics-based reconfigurable logic block. IEEE Trans. Circuits Syst. II Express Briefs 64(6), 715–719 (2017)
Zhou, Y., Hua, Z., Pun, C.-M., Chen, C.P.: Cascade chaotic system with applications. IEEE Trans. Cybern. 45(9), 2001–2012 (2014)
Al-Shameri, W.F.H.: Dynamical properties of the hénon mapping. Int. J. Math. Anal. 6(49), 2419–2430 (2012)
Hua, Z., Zhou, Y.: Dynamic parameter-control chaotic system. IEEE Trans. Cybern. 46(12), 3330–3341 (2015)
Rieger, R., Demosthenous, A., Taylor, J.: A 230-nW 10-s time constant CMOS integrator for an adaptive nerve signal amplifier. IEEE J. Solid-State Circ. 39(11), 1968–1975 (2004)
Carbajal-Gomez, V.H., Tlelo-Cuautle, E., Muñoz-Pacheco, J.M., de la Fraga, L.G., Sanchez-Lopez, C., Fernandez-Fernandez, F.V.: Optimization and CMOS design of chaotic oscillators robust to PVT variations. Integration 65, 32–42 (2019)
Acknowledgement
The simulations on this paper are done using Cadence virtuoso, supplied by Cadence university program to California State University Long Beach. This work is supported by the National Science Foundation under award No. 2131156.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Hedayatipour, A., Monani, R., Rezaei, A., Aliasgari, M., Sayadi, H. (2022). A Comprehensive Analysis of Chaos-Based Secure Systems. In: Chang, SY., Bathen, L., Di Troia, F., Austin, T.H., Nelson, A.J. (eds) Silicon Valley Cybersecurity Conference. SVCC 2021. Communications in Computer and Information Science, vol 1536. Springer, Cham. https://doi.org/10.1007/978-3-030-96057-5_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-96057-5_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-96056-8
Online ISBN: 978-3-030-96057-5
eBook Packages: Computer ScienceComputer Science (R0)