Abstract
Studying the variations of the submarine environment at the plankton level can significantly contribute to the preservation of the environment. In situ plankton imaging systems have known an important evolution giving large scale plankton data for organism classification and analysis. Automated classifiers based on Convolutional Neural network are identified as highly efficient methods for image classification but require careful configuration especially for 3D images. In this paper, we propose a CNN architecture for 3D image classification to classify 155 classes of plankton from TARA Oceans dataset in four levels of hierarchical classes. We experiment and compare our proposal denoted C3D2 with competitive CNNs already performed on the case of plankton recognition such as DenseNet and SparseConvNet. Furthermore, we design several methods to incorporate context metadata on CNN architectures in order to boost the performance of the classification model. Finally, we show that C3D2 is more precise than other models. We also show the impact of incorporating context metadata into CNN architecture on different levels of classes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Colin, S., et al.: Quantitative 3D-imaging for cell biology and ecology of environmental microbial eukaryotes. Elife 6, e26066 (2017)
Cowen, R.K., Sponaugle, S., Robinson, K.L., Luo, J.: PlanktonSet 1.0: Plankton imagery data collected from F.G. Walton smith in straits of Florida from 3 June 2014 to 6 June 2014 and used in the 2015 national data science bowl (NODC Accession 0127422) (2015)
Cowen, R.K., Guigand, C.M.: In situ ichthyoplankton imaging system (ISIIS): system design and preliminary results. Limnol. Oceanogr. 6, 126–132 (2008)
Ellen, J.S., Graff, C.A., Ohman, M.D.: Improving plankton image classification using context metadata. Limnol. Oceanogr. 17, 439–461 (2019)
Gomez-Donoso, F., Garcia-Garcia, A., Garcia-Rodriguez, J., Orts-Escolano, S., Cazorla, M.: LonchaNet: a sliced-based CNN architecture for real-time 3D object recognition. In: 2017 International Joint Conference on Neural Networks (IJCNN). IEEE (2017)
Gorsky, G., et al.: Digital zooplankton image analysis using the ZooScan integrated system. J. Plankton Res. 32(3), 285–303 (2010)
Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., Lew, M.S.: Deep learning for visual understanding: a review. Neurocomputing 187, 27–48 (2016)
Hara, K., Kataoka, H., Satoh, Y.: Can spatiotemporal 3D CNNS retrace the history of 2D CNNS and ImageNet? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, PMLR (2015)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. In: Proceedings of the IEEE (1998)
Lumini, A., Nanni, L.: Ocean ecosystems Plankton classification. In: Hassaballah, M., Hosny, K. (eds.) Recent Advances in Computer Vision. Studies in Computational Intelligence, vol. 804, pp. 261-280. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-03000-1_11
Lumini, A., Nanni, L., Maguolo, G.: Deep learning for plankton and coral classification. Appl. Comput. Inf. (2020)
Luo, J.Y., et al.: Environmental drivers of the fine-scale distribution of a gelatinous zooplankton community across a mesoscale front. Mar. Ecol. Prog. Ser. 510, 129–149 (2014)
Luo, J.Y., et al.: Automated plankton image analysis using convolutional neural networks. Limnol. Oceanogr. 16(12), 814–827 (2018)
McClatchie, S., et al.: Resolution of fine biological structure including small narcomedusae across a front in the southern California bight. J. Geophys. Res. Oceans (2012)
Nanni, L., Costa, Y.M., Aguiar, R.L., Mangolin, R.B., Brahnam, S., Silla, C.N.: Ensemble of convolutional neural networks to improve animal audio classification. EURASIP J. Audio Speech Music Process. 2020, 8 (2020). https://doi.org/10.1186/s13636-020-00175-3
Nunnari, F., Bhuvaneshwara, C., Ezema, A.O., Sonntag, D.: A study on the fusion of pixels and patient metadata in CNN-based classification of skin lesion images. In: Holzinger, A., Kieseberg, P., Tjoa, A., Weippl, E. (eds.) CD-MAKE 2020. LNCS, vol. 12279, pp. 191–208. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57321-8_11
Perez, L., Wang, J.: The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621 (2017)
Robinson, K.L., Luo, J.Y., Sponaugle, S., Guigand, C., Cowen, R.K.: A tale of two crowds: public engagement in plankton classification. Front. Mar. Sci 4, 82 (2017)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Sosik, H.M., Olson, R.J.: Automated taxonomic classification of phytoplankton sampled with imaging-in-flow cytometry. Limnol. Oceanogr. Methods 6, 204–216 (2007)
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)
Szegedy, C., et al.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition (2015)
Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision (2015)
Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53
Zheng, H., Wang, R., Yu, Z., Wang, N., Gu, Z., Zheng, B.: Automatic plankton image classification combining multiple view features via multiple kernel learning. BMC Bioinf. 18, 570 (2017). https://doi.org/10.1186/s12859-017-1954-8
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Benammar, N., Kahil, H., Titah, A., Calcagno, F.M., Abidi, A., Mabrouk, M.B. (2022). Improving 3D Plankton Image Classification with C3D2 Architecture and Context Metadata. In: Abraham, A., et al. Innovations in Bio-Inspired Computing and Applications. IBICA 2021. Lecture Notes in Networks and Systems, vol 419. Springer, Cham. https://doi.org/10.1007/978-3-030-96299-9_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-96299-9_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-96298-2
Online ISBN: 978-3-030-96299-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)