Abstract
We live in a world where data is becoming increasingly valuable and increasingly abundant in volume. All companies produce data from sales, sensors, and various other sources. The main challenges are how can we extract insights from such a rich data environment and if Deep Learning is capable of circumventing Big Data’s challenges. To reach a conclusion, Social Network data is used as a case study for predicting sentiment changes in the Stock Market. The main objective of this paper is to develop a computational study and analyze its performance. Deep Learning was able to handle some challenges of Big Data, allowing results to be obtained and compared with real world situations. The outputs contribute to understand Deep Learning’s usage with Big Data and how it acts in Sentiment Analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wang, W.Y.C., Wang, Y.: Analytics in the era of big data: the digital transformations and value creation in industrial marketing. Ind. Mark. Manag. Elsevier 12–15 (2020)
Lecun, Y., Bengio, Y., Hinton, G.: Deep learning [Internet]. Nature. Nature Publishing Group. http://colah.github.io/ (2015). Accessed Jan 25 2021, pp. 436–444
Ahad, M.A., Tripathi, G., Agarwal, P.: Learning analytics for IoE based educational model using deep learning techniques: architecture, challenges and applications. Smart Learn Environ 2018 51 [Internet]. SpringerOpen. https://slejournal.springeropen.com/articles/https://doi.org/10.1186/s40561-018-0057-y (2018). Accessed Nov 13 2021, vol. 5, pp. 1–16
L’Heureux, A., Grolinger, K., Elyamany, H.F., Capretz, M.A.M.: Machine learning with Big Data: Challenges and approaches. IEEE Access. Institute of Electrical and Electronics Engineers Inc. 5, 7776–7797 (2017)
Zhou, L., Pan, S., Wang, J., Vasilakos, A.V.: Machine learning on big data: opportunities and challenges. Neurocomputing 237, 350–361 (2017)
Khan, M., Uddin, M.F., Gupta, N.: Seven V’s of Big Data understanding Big Data to extract value. In: Proc 2014 Zo 1 Conf Am Soc Eng Educ - “Engineering Educ Ind Involv Interdiscip Trends”, ASEE Zo 1 2014. IEEE Computer Society (2014)
Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop distributed file system. In: 2010 IEEE 26th Symp. Mass Storage Syst. Technol. MSST2010. IEEE Computer Society (2010)
Ahad, M.A., Biswas, R.: Comparing and analyzing the characteristics of Hadoop, Cassandra and Quantcast file systems for handling big data. Indian J. Sci. Technol. [Internet]. The Indian Society of Education and Environment. https://indjst.org/articles/comparing-and-analyzing-the-characteristics-of-hadoop-cassandra-and-quantcast-file-systems-for-handling-big-data (2017). Accessed Nov 13 2021, vol. 10, pp. 1–6
Ahad, M.A., Biswas, R.: Request-based, secured and energy-efficient (RBSEE) architecture for handling IoT big data: doi: 101177/0165551518787699 [Internet]. SAGE Publications, Sage UK, London, England. https://journals.sagepub.com/doi/https://doi.org/10.1177/0165551518787699 (2018) Accessed Nov 13 2021, vol. 45, pp. 227–238
Ji, C., Li, Y., Qiu, W., Awada, U., Li, K.: Big data processing in cloud computing environments. In: Proc 2012 Int Symp Pervasive Syst Algorithms, Networks, I-SPAN 2012, pp. 17–23 (2012)
Inoubli, W., Aridhi, S., Mezni, H., Maddouri, M., Mephu Nguifo, E.: An experimental survey on big data frameworks. Futur. Gener. Comput. Syst. 86, 546–564 (2018)
Kumar Vavilapalli, V., Murthy, A.C., Douglas, C., Agarwal, S., Konar, M., Evans, R. et al.: Apache Hadoop YARN: Yet Another Resource Negotiator. doi: https://doi.org/10.1145/2523616.2523633 (2013). Accessed Feb 3 2021, vol. 13, pp. 1–3
Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: Proc. 2017 Int. Conf. Eng. Technol. ICET 2017, pp. 1–6. Institute of Electrical and Electronics Engineers Inc. (2018)
Yin, W., Kann, K., Yu, M., Schütze, H.: Comparative study of CNN and RNN for natural language processing. http://arxiv.org/abs/1702.01923 (2017). Accessed Feb 27 2021
Irsoy, O., Cardie, C.: Deep recursive neural networks for compositionality in language. Adv. Neural. Inf. Process. Syst. 2096–2104 (2014)
Otter, D.W., Medina, J.R., Kalita, J.K.: A survey of the usages of deep learning in natural language processing. arXiv. arXiv (2018)
Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical Attention Networks for Document Classification (2016)
Zhou, X., Wan, X., Xiao, J.: Attention-based LSTM network for cross-lingual sentiment classification. In: EMNLP 2016 – Conf. Empir. Methods Nat. Lang. Process Proc., pp. 247–256 (2016)
Basiri, M.E., Nemati, S., Abdar, M., Cambria, E., Acharya, U.R.: ABCDM: An Attention-based Bidirectional CNN-RNN Deep Model for sentiment analysis. Futur. Gener. Comput. Syst. 115, 279–294 (2021)
Handelman, G.S., Kok, H.K., Chandra, R.V., Razavi, A.H., Huang, S., Brooks, M., et al.: Peering Into the Black Box of Artificial Intelligence: Evaluation Metrics of Machine Learning Methods. Am. J. Roentgenol. [Internet]. American Roentgen Ray Society 212, pp. 38–43. https://www.ajronline.org/ (2019). Accessed Feb 28 2021 https://doi.org/10.2214/AJR.18.20224
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Correia, F., Madureira, A., Bernardino, J. (2022). Deep Learning for Big Data. In: Abraham, A., et al. Innovations in Bio-Inspired Computing and Applications. IBICA 2021. Lecture Notes in Networks and Systems, vol 419. Springer, Cham. https://doi.org/10.1007/978-3-030-96299-9_20
Download citation
DOI: https://doi.org/10.1007/978-3-030-96299-9_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-96298-2
Online ISBN: 978-3-030-96299-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)