Skip to main content

Deep Learning for Big Data

  • Conference paper
  • First Online:
Innovations in Bio-Inspired Computing and Applications (IBICA 2021)

Abstract

We live in a world where data is becoming increasingly valuable and increasingly abundant in volume. All companies produce data from sales, sensors, and various other sources. The main challenges are how can we extract insights from such a rich data environment and if Deep Learning is capable of circumventing Big Data’s challenges. To reach a conclusion, Social Network data is used as a case study for predicting sentiment changes in the Stock Market. The main objective of this paper is to develop a computational study and analyze its performance. Deep Learning was able to handle some challenges of Big Data, allowing results to be obtained and compared with real world situations. The outputs contribute to understand Deep Learning’s usage with Big Data and how it acts in Sentiment Analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, W.Y.C., Wang, Y.: Analytics in the era of big data: the digital transformations and value creation in industrial marketing. Ind. Mark. Manag. Elsevier 12–15 (2020)

    Google Scholar 

  2. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning [Internet]. Nature. Nature Publishing Group. http://colah.github.io/ (2015). Accessed Jan 25 2021, pp. 436–444

  3. Ahad, M.A., Tripathi, G., Agarwal, P.: Learning analytics for IoE based educational model using deep learning techniques: architecture, challenges and applications. Smart Learn Environ 2018 51 [Internet]. SpringerOpen. https://slejournal.springeropen.com/articles/https://doi.org/10.1186/s40561-018-0057-y (2018). Accessed Nov 13 2021, vol. 5, pp. 1–16

  4. L’Heureux, A., Grolinger, K., Elyamany, H.F., Capretz, M.A.M.: Machine learning with Big Data: Challenges and approaches. IEEE Access. Institute of Electrical and Electronics Engineers Inc. 5, 7776–7797 (2017)

    Google Scholar 

  5. Zhou, L., Pan, S., Wang, J., Vasilakos, A.V.: Machine learning on big data: opportunities and challenges. Neurocomputing 237, 350–361 (2017)

    Article  Google Scholar 

  6. Khan, M., Uddin, M.F., Gupta, N.: Seven V’s of Big Data understanding Big Data to extract value. In: Proc 2014 Zo 1 Conf Am Soc Eng Educ - “Engineering Educ Ind Involv Interdiscip Trends”, ASEE Zo 1 2014. IEEE Computer Society (2014)

    Google Scholar 

  7. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop distributed file system. In: 2010 IEEE 26th Symp. Mass Storage Syst. Technol. MSST2010. IEEE Computer Society (2010)

    Google Scholar 

  8. Ahad, M.A., Biswas, R.: Comparing and analyzing the characteristics of Hadoop, Cassandra and Quantcast file systems for handling big data. Indian J. Sci. Technol. [Internet]. The Indian Society of Education and Environment. https://indjst.org/articles/comparing-and-analyzing-the-characteristics-of-hadoop-cassandra-and-quantcast-file-systems-for-handling-big-data (2017). Accessed Nov 13 2021, vol. 10, pp. 1–6

  9. Ahad, M.A., Biswas, R.: Request-based, secured and energy-efficient (RBSEE) architecture for handling IoT big data: doi: 101177/0165551518787699 [Internet]. SAGE Publications, Sage UK, London, England. https://journals.sagepub.com/doi/https://doi.org/10.1177/0165551518787699 (2018) Accessed Nov 13 2021, vol. 45, pp. 227–238

  10. Ji, C., Li, Y., Qiu, W., Awada, U., Li, K.: Big data processing in cloud computing environments. In: Proc 2012 Int Symp Pervasive Syst Algorithms, Networks, I-SPAN 2012, pp. 17–23 (2012)

    Google Scholar 

  11. Inoubli, W., Aridhi, S., Mezni, H., Maddouri, M., Mephu Nguifo, E.: An experimental survey on big data frameworks. Futur. Gener. Comput. Syst. 86, 546–564 (2018)

    Article  Google Scholar 

  12. Kumar Vavilapalli, V., Murthy, A.C., Douglas, C., Agarwal, S., Konar, M., Evans, R. et al.: Apache Hadoop YARN: Yet Another Resource Negotiator. doi: https://doi.org/10.1145/2523616.2523633 (2013). Accessed Feb 3 2021, vol. 13, pp. 1–3

  13. Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: Proc. 2017 Int. Conf. Eng. Technol. ICET 2017, pp. 1–6. Institute of Electrical and Electronics Engineers Inc. (2018)

    Google Scholar 

  14. Yin, W., Kann, K., Yu, M., Schütze, H.: Comparative study of CNN and RNN for natural language processing. http://arxiv.org/abs/1702.01923 (2017). Accessed Feb 27 2021

  15. Irsoy, O., Cardie, C.: Deep recursive neural networks for compositionality in language. Adv. Neural. Inf. Process. Syst. 2096–2104 (2014)

    Google Scholar 

  16. Otter, D.W., Medina, J.R., Kalita, J.K.: A survey of the usages of deep learning in natural language processing. arXiv. arXiv (2018)

    Google Scholar 

  17. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical Attention Networks for Document Classification (2016)

    Google Scholar 

  18. Zhou, X., Wan, X., Xiao, J.: Attention-based LSTM network for cross-lingual sentiment classification. In: EMNLP 2016 – Conf. Empir. Methods Nat. Lang. Process Proc., pp. 247–256 (2016)

    Google Scholar 

  19. Basiri, M.E., Nemati, S., Abdar, M., Cambria, E., Acharya, U.R.: ABCDM: An Attention-based Bidirectional CNN-RNN Deep Model for sentiment analysis. Futur. Gener. Comput. Syst. 115, 279–294 (2021)

    Article  Google Scholar 

  20. Handelman, G.S., Kok, H.K., Chandra, R.V., Razavi, A.H., Huang, S., Brooks, M., et al.: Peering Into the Black Box of Artificial Intelligence: Evaluation Metrics of Machine Learning Methods. Am. J. Roentgenol. [Internet]. American Roentgen Ray Society 212, pp. 38–43. https://www.ajronline.org/ (2019). Accessed Feb 28 2021 https://doi.org/10.2214/AJR.18.20224

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filipe Correia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Correia, F., Madureira, A., Bernardino, J. (2022). Deep Learning for Big Data. In: Abraham, A., et al. Innovations in Bio-Inspired Computing and Applications. IBICA 2021. Lecture Notes in Networks and Systems, vol 419. Springer, Cham. https://doi.org/10.1007/978-3-030-96299-9_20

Download citation

Publish with us

Policies and ethics