Skip to main content

A Review on MOEA and Metaheuristics for Feature-Selection

  • Conference paper
  • First Online:
Innovations in Bio-Inspired Computing and Applications (IBICA 2021)

Abstract

In the areas of machine-learning/big data, feature selection is normally regarded as a very important problem to be solved, as it directly impacts both data analysis and model creation. The problem of optimizing the selected features of a given dataset is not always trivial, however, throughout the years various ways to counter this optimization problem have been presented. This work presents how feature-selection fits in the larger context of multi-objective problems as well as a review of how both multi-objective evolutionary algorithms and metaheuristics are being used in order to solve feature selection problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Pareto optimality can be roughly defined as a state at which resources in a given system are optimized such that one dimension cannot improve without a second worsening. “The main idea (...) is that a society is enjoying maximum ophelimity when no one can be made better off without making someone else worse off” [7].

  2. 2.

    Involving or serving as an aid to learning, discovery, or problem-solving by experimental and especially trial-and-error methods (in Merriam-Webster Dictionary).

References

  1. Talbi, E.-G., et al.: Hybrid Metaheuristics. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30671-6

    Book  MATH  Google Scholar 

  2. Zorarpacı, E., Özel, S.A.: A hybrid approach of differential evolution and artificial bee colony for feature selection. Expert Syst. Appl. 62, 91–103 (2016)

    Article  Google Scholar 

  3. Olson, R.: TPOT (tree-based pipeline optimization tool) (2017)

    Google Scholar 

  4. Sheth, P., Patil, S.: A review on feature selection problem solving using multiobjective evolutionary optimization algorithms. Int. J. Eng. Appl. Sci. Technol. 2(9), 42–54 (2018)

    Google Scholar 

  5. Diao, R., Shen, Q.: Nature inspired feature selection meta-heuristics. Artif. Intell. Rev. 44(3), 311–340 (2015). https://doi.org/10.1007/s10462-015-9428-8

    Article  Google Scholar 

  6. Deb, K.: Multi-objective evolutionary algorithms. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence. Springer Handbooks, pp. 995–1015. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-43505-2_49

  7. Luc, D.T.: Pareto optimality. In: Chinchuluun, A., Pardalos, P.M., Migdalas, A., Pitsoulis, L. (eds.) Pareto Optimality, Game Theory and Equilibria. Springer Optimization and Its Applications, vol. 17, pp. 481–515. Springer, New York (2008). https://doi.org/10.1007/978-0-387-77247-9_18

  8. Goldenberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, 13th edn. Addison-Wesley Professional, Reading (1988)

    Google Scholar 

  9. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization: a short review. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 2419–2426. IEEE (2008)

    Google Scholar 

  10. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  11. Miettinen, K.: Nonlinear Multiobjective Optimization, vol. 12. Springer Science & Business Media (2012). https://doi.org/10.1007/978-1-4615-5563-6

  12. Fonseca, C.M., Fleming, P.J., et al.: Genetic algorithms for multiobjective optimization: formulation discussion and generalization. In: ICGA, vol. 93, pp. 416–423. Citeseer (1993)

    Google Scholar 

  13. Tanino, T., Tanaka, M., Hojo, C.: An interactive multicriteria decision making method by using a genetic algorithm. In: 2nd International Conference on Systems Science and Systems Engineering (1993)

    Google Scholar 

  14. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) Parallel Problem Solving from Nature - PPSN VIII. PPSN 2004. Lecture Notes in Computer Science, vol. 3242, pp. 832–842. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_84

  15. Basseur, M., Zitzler, E.: Handling uncertainty in indicator-based multiobjective optimization. Int. J. Comput. Intell. Res. 2(3), 255–272 (2006)

    Article  MathSciNet  Google Scholar 

  16. Bader, J., Zitzler, E.: Robustness in hypervolume-based multiobjective search. Computer Engineering and Networks Laboratory (TIK), ETH Zurich, TIK Report, vol. 317 (2010)

    Google Scholar 

  17. Lara, A., Sanchez, G., Coello, C.A.C., Schutze, O.: HCS: a new local search strategy for memetic multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 14(1), 112–132 (2009)

    Article  Google Scholar 

  18. Elhossini, A., Areibi, S., Dony, R.: Strength pareto particle swarm optimization and hybrid EA-PSO for multi-objective optimization. Evol. Comput. 18(1), 127–156 (2010)

    Article  Google Scholar 

  19. Yang, D., Jiao, L., Gong, M.: Adaptive multi-objective optimization based on nondominated solutions. Comput. Intell. 25(2), 84–108 (2009)

    Article  MathSciNet  Google Scholar 

  20. Huang, B., Buckley, B., Kechadi, T.-M.: Multi-objective feature selection by using NSGA-II for customer churn prediction in telecommunications. Expert Syst. Appl. 37(5), 3638–3646 (2010)

    Article  Google Scholar 

  21. Gaspar-Cunha, A.: Feature selection using multi-objective evolutionary algorithms: application to cardiac SPECT diagnosis. In: Rocha, M.P., Riverola, F.F., Shatkay, H., Corchado, J.M. (eds.) Advances in Bioinformatics. AISC, vol. 74, pp.85–92. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13214-8_11

  22. Xue, B., Cervante, L., Shang, L., Browne, W.N., Zhang, M.: Multi-objective evolutionary algorithms for filter based feature selection in classification. Int. J. Artif. Intell. Tools 22(04), 1350024 (2013)

    Article  Google Scholar 

  23. Yong, Z., Dun-wei, G., Wan-qiu, Z.: Feature selection of unreliable data using an improved multi-objective PSO algorithm. Neurocomputing 171, 1281–1290 (2016)

    Article  Google Scholar 

  24. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. (CSUR) 35(3), 268–308 (2003)

    Article  Google Scholar 

  25. Mousin, L., Jourdan, L., Kessaci Marmion, M.E., Dhaenens, C.: Feature selection using Tabu search with learning memory: learning Tabu search. In: Festa, P., Sellmann, M., Vanschoren, J. (eds.) LION 2016. LNCS, vol. 10079, pp. 141–156. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50349-3_10

  26. Mafarja, M.M., Mirjalili, S.: Hybrid whale optimization algorithm with simulated annealing for feature selection. Neurocomputing 260, 302–312 (2017)

    Article  Google Scholar 

  27. Mafarja, M.M., Mirjalili, S.: Hybrid binary ant lion optimizer with rough set and approximate entropy reducts for feature selection. Soft Comput. 23(15), 6249–6265 (2019)

    Article  Google Scholar 

  28. Al-Tashi, Q., Kadir, S.J.A., Rais, H.M., Mirjalili, S., Alhussian, H.: Binary optimization using hybrid grey wolf optimization for feature selection. IEEE Access 7, 39496–39508 (2019)

    Article  Google Scholar 

  29. Blum, C., Puchinger, J., Raidl, G., Roli, A., et al.: A brief survey on hybrid metaheuristics. In: Proceedings of BIOMA, pp. 3–18 (2010)

    Google Scholar 

  30. Sugumaran, V., Ramachandran, K.: Effect of number of features on classification of roller bearing faults using SVM and PSVM. Expert Syst. Appl. 38(4), 4088–4096 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This article is a result of the project “Criação de um Núcleo de I&D para a geração de novo conhecimento nas áreas de Inteligência Artificial, Machine Learning, Intelligent Marketing e One-2-One Marketing”, supported by Operational Programme for Competitiveness and Internationalization (COMPETE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Pereira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Coelho, D., Madureira, A., Pereira, I., Gonçalves, R. (2022). A Review on MOEA and Metaheuristics for Feature-Selection. In: Abraham, A., et al. Innovations in Bio-Inspired Computing and Applications. IBICA 2021. Lecture Notes in Networks and Systems, vol 419. Springer, Cham. https://doi.org/10.1007/978-3-030-96299-9_21

Download citation

Publish with us

Policies and ethics