Skip to main content

A Survey on the Quality of Service and Metaheuristic Based Resolution Methods for Multi-cloud IoT Service Selection

  • Conference paper
  • First Online:
Innovations in Bio-Inspired Computing and Applications (IBICA 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 419))

Abstract

The Internet-of-Things (IoT) generate increasingly significant amount of data that needs to be stored and analysed. The use of IoT devices as a service makes it more accessible and exploitable, this could be achieved using of cloud computing. Multi-cloud service composition and selection are required to fulfill increasingly complicated user requests for services. A service request is made from a cloud broker to cloud providers (CP) to deliver the required Quality of Service (QoS). Selecting services and optimizing service compositions to satisfy functional and non-functional conflicting requirements across various cloud service providers is an non-deterministic polynomial-time hardness problem (NP-hard). Multiobjective (MO) metaheuristics are known to be performant to solve such a problem. This study examines how to select IoT services to achieve the best performances on the eight selected QoS across multiple CP. The experiment results reveal that among the 18 compared algorithms, the parallel NSGAII provides the most efficient and optimal outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asghari, P., Rahmani, A.M., Javadi, H.H.S.: Privacy-aware cloud service composition based on QoS optimization in internet of things. J. Amb. Intell. Human. Comput. (2020). https://doi.org/10.1007/s12652-020-01723-7

    Article  Google Scholar 

  2. Baker, T., Asim, M., Tawfik, H., Aldawsari, B., Buyya, R.: An energy-aware service composition algorithm for multiple cloud-based IoT applications. J. Netw. Comput. App. 89, 96–108 (2017). https://doi.org/10.1016/j.jnca.2017.03.008

    Article  Google Scholar 

  3. Chauhan, S.S., Pilli, E.S., Joshi, R., Singh, G., Govil, M.: Brokering in interconnected cloud computing environments: a survey. J. Parallel Distrib. Comput. 133, 193–209 (2019). https://doi.org/10.1016/j.jpdc.2018.08.001

    Article  Google Scholar 

  4. Choudhary, G., Jain, A.: Internet of things: a survey on architecture, technologies, protocols and challenges. In: 2016 International Conference on Recent Advances and Innovations in Engineering (ICRAIE). IEEE (2016). https://doi.org/10.1109/icraie.2016.7939537

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  6. Durillo, J.J., Nebro, A.J., Luna, F., Alba, E.: A study of master-slave approaches to parallelize NSGA-II. In: 2008 IEEE International Symposium on Parallel and Distributed Processing. IEEE (2008). https://doi.org/10.1109/ipdps.2008.4536375

  7. Durillo, J.J., Nebro, A.J., Luna, F., Alba, E.: On the effect of the steady-state selection scheme in multi-objective genetic algorithms. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.K., Sevaux, M. (eds.) Evolutionary Multi-criterion Optimization. EMO 2009. Lecture Notes in Computer Science. LNCS, vol. 5467, pp. 183–197. Springer, Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01020-0_18

    Chapter  Google Scholar 

  8. Feng, J., Shen, W.Z., Xu, C.: Multi-objective random search algorithm for simultaneously optimizing wind farm layout and number of turbines. J. Phys. Conf. Ser. 753, 032011 (2016). https://doi.org/10.1088/1742-6596/753/3/032011

    Article  Google Scholar 

  9. Hatton, M.: The IoT in 2030: 24 billion connected things generating \$1.5 trillion (2020). https://alhena.io/the-iot-in-2030-24-billion-connected-things-generating-1-5-trillion/. Accessed 23 Sep 2021

  10. Kumrai, T., Ota, K., Dong, M., Kishigami, J., Sung, D.K.: Multi-objective optimization in cloud brokering systems for connected internet of things. IEEE Internet Things J. 4(2), 404–413 (2017). https://doi.org/10.1109/jiot.2016.2565562

    Article  Google Scholar 

  11. Lakhdari, A., Bouguettaya, A., Mistry, S., Neiat, A.G.G.: Composing energy services in a crowdsourced IoT environment. IEEE Trans. Serv. Comput. 99, 1 (2020). https://doi.org/10.1109/tsc.2020.2980258

    Article  Google Scholar 

  12. Lancinskas, A., Zilinskas, J.: Approaches to parallelize pareto ranking in NSGA-II algorithm. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) Parallel Processing and Applied Mathematics. PPAM 2011. Lecture Notes in Computer Science, vol. 7204, pp. 371–380. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31500-8_38

    Chapter  Google Scholar 

  13. Li, H., Zhang, Q.: Multi-objective optimization problems with complicated pareto sets, MOEA/d and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009). https://doi.org/10.1109/tevc.2008.925798

    Article  Google Scholar 

  14. Liu, J., et al.: A cooperative evolution for QoS-driven IoT service composition. Automatika 54(4), 438–447 (2013). https://doi.org/10.7305/automatika.54-4.417

    Article  Google Scholar 

  15. Maltese, J., Ombuki-Berman, B.M., Engelbrecht, A.P.: A scalability study of many-objective optimization algorithms. IEEE Trans. Evol. Comput. 22(1), 79–96 (2018). https://doi.org/10.1109/tevc.2016.2639360

    Article  Google Scholar 

  16. Martínez, S.Z., Coello, C.A.C.: A multi-objective particle swarm optimizer based on decomposition. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation - GECCO 2011. ACM Press (2011). https://doi.org/10.1145/2001576.2001587

  17. Nebro, A.J., Durillo, J., García-Nieto, J., Coello, C., Luna, F., Alba, E.: SMPSO: a new PSO metaheuristic for multi-objective optimization (2009)

    Google Scholar 

  18. Nebro, A.J., Durillo, J.J.: A study of the parallelization of the multi-objective metaheuristic MOEA/D. In: Blum, C., Battiti, R. (eds.) Learning and Intelligent Optimization. LION 2010. Lecture Notes in Computer Science. LNCS, vol. 6073, pp. 303–317. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13800-3_32

    Chapter  Google Scholar 

  19. Nebro, A.J., Durillo, J.J., Luna, F., Dorronsoro, B., Alba, E.: Design issues in a multi-objective cellular genetic algorithm. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) Evolutionary Multi-Criterion Optimization. EMO 2007. LNCS, vol. 4403, pp. 126–140. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2_13

    Chapter  Google Scholar 

  20. Nebro, A.J., Durillo, J.J., Luna, F., Dorronsoro, B., Alba, E.: MOCell: a cellular genetic algorithm for multi-objective optimization. Int. J. Intell. Syst. 24(7), 726–746 (2009). https://doi.org/10.1002/int.20358

    Article  MATH  Google Scholar 

  21. Nebro, A.J., Durillo, J.J., Machin, M., Coello Coello, C.A., Dorronsoro, B.: A study of the combination of variation operators in the NSGA-II Algorithm. In: Advances in Artificial Intelligence. CAEPIA 2013. LNCS, vol. 8109, pp. 269–278. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40643-0_28

    Chapter  Google Scholar 

  22. Olariu, S., Zomaya, A.Y. (eds.): Handbook of Bioinspired Algorithms and Applications. Chapman and Hall/CRC, Boco Raton (2005). https://doi.org/10.1201/9781420035063

  23. de Oliveira, L.B., Marcelino, C.G., Milanes, A., Almeida, P.E.M., Carvalho, L.M.: A successful parallel implementation of NSGA-II on GPU for the energy dispatch problem on hydroelectric power plants. In: 2016 IEEE Congress on Evolutionary Computation (CEC). IEEE, July 2016. https://doi.org/10.1109/cec.2016.7744337

  24. Pang, B., Hao, F., Park, D.S., Maio, C.D.: A multi-criteria multi-cloud service composition in mobile edge computing. Sustainability 12(18), 7661 (2020). https://doi.org/10.3390/su12187661

    Article  Google Scholar 

  25. Singh, M., Baranwal, G., Tripathi, A.K.: QoS-aware selection of IoT-based service. Arabian J. Sci. Eng. 45(12), 10033–10050 (2020). https://doi.org/10.1007/s13369-020-04601-8

    Article  Google Scholar 

  26. Sun, M., Zhou, Z., Wang, J., Du, C., Gaaloul, W.: Energy-efficient IoT service composition for concurrent timed applications. Future Gener. Comput. Syst. 100, 1017–1030 (2019). https://doi.org/10.1016/j.future.2019.05.070

    Article  Google Scholar 

  27. Toutouh, J., Alba, E.: Parallel multi-objective metaheuristics for smart communications in vehicular networks. Soft Comput. 21(8), 1949–1961 (2015). https://doi.org/10.1007/s00500-015-1891-2

    Article  Google Scholar 

  28. Vakili, M., Jahangiri, N., Sharifi, M.: Cloud service selection using cloud service brokers: approaches and challenges. Front. Comput. Sci. 13(3), 599–617 (2018). https://doi.org/10.1007/s11704-017-6124-7

    Article  Google Scholar 

  29. Wang, H., Qian, F.: Improved PSO-based multi-objective optimization using inertia weight and acceleration coefficients dynamic changing, crowding and mutation. In: 2008 7th World Congress on Intelligent Control and Automation. IEEE (2008). https://doi.org/10.1109/wcica.2008.4593644

  30. Wang, H., Qian, F.: Improved PSO-based multi-objective optimization using inertia weight and acceleration coefficients dynamic changing, crowding and mutation. In: 2008 7th World Congress on Intelligent Control and Automation, pp. 4479–4484 (2008). https://doi.org/10.1109/WCICA.2008.4593644

  31. Wang, W., Niu, D., Li, B., Liang, B.: Dynamic cloud resource reservation via cloud brokerage. In: 2013 IEEE 33rd International Conference on Distributed Computing Systems. IEEE, July 2013. https://doi.org/10.1109/icdcs.2013.20

  32. Yang, C., Peng, T., Lan, S., Shen, W., Wang, L.: Towards IoT-enabled dynamic service optimal selection in multiple manufacturing clouds. J. Manuf. Syst. 56, 213–226 (2020). https://doi.org/10.1016/j.jmsy.2020.06.004

    Article  Google Scholar 

  33. Zhang, M., Liu, L., Liu, S.: Genetic algorithm based QoS-aware service composition in multi-cloud. In: 2015 IEEE Conference on Collaboration and Internet Computing (CIC). IEEE, October 2015. https://doi.org/10.1109/cic.2015.23

  34. Zhang, X., Geng, J., Ma, J., Liu, H., Niu, S.: A QoS-driven service selection optimization algorithm for internet of things, September 2020. https://doi.org/10.21203/rs.3.rs-69961/v1

  35. Zitzler, E., Künzli, S.: Indicator-based selection in multi-objective search. In: Yao, X., et al. (eds.) Parallel Problem Solving from Nature - PPSN VIII. PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_84

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Zebouchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zebouchi, A., Aklouf, Y. (2022). A Survey on the Quality of Service and Metaheuristic Based Resolution Methods for Multi-cloud IoT Service Selection. In: Abraham, A., et al. Innovations in Bio-Inspired Computing and Applications. IBICA 2021. Lecture Notes in Networks and Systems, vol 419. Springer, Cham. https://doi.org/10.1007/978-3-030-96299-9_40

Download citation

Publish with us

Policies and ethics