Skip to main content

A Survey on Arrhythmia Disease Detection Using Deep Learning Methods

  • Conference paper
  • First Online:
Innovations in Bio-Inspired Computing and Applications (IBICA 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 419))

  • 1003 Accesses

Abstract

The Cardiovascular conditions are now one of the foremost common impacts on human health. Report from WHO, says that in India 45% of deaths are caused due to heart diseases. So, heart disease detection has more importance. Manual auscultation was used to diagnose cardiovascular problems just a few years ago. Nowadays computer-assisted technologies are used to identify diseases. Accurate detection of the disease can make recovery simpler, more effective, and less expensive. In this proposed work, 11 years of research works on arrhythmia detection using deep learning are integrated. Moreover, here presents a comprehensive evaluation of recent deep learning-based approaches for detecting heart disease. There are a number of review papers accessible that focus on traditional methods for detecting cardiac disease. This article addresses some essential approaches for categorizing ECG signal images into desired classes, such as pre-processing, feature extraction, feature selection, and classification. However, the reviewed literature’s consolidated details have been summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ye, C., Vijaya Kumar, B.V.K., Coimbra, M.T.: Heartbeat classification using morphological and dynamic features of ECG signals. IEEE Trans. Biomed. Eng. 59(10), 2930–2941 (2012). https://doi.org/10.1109/TBME.2012.2213253

    Article  Google Scholar 

  2. Gayathri, S., Suchetha, M., Latha, V.: ECG arrhythmia detection and classification using relevance vector machine. Procedia Engineering 38, 1333–1339 (2012)

    Article  Google Scholar 

  3. Nabih-Ali, M., El-Dahshan, E.-S.A., Yahia, A.S.: A review of intelligent systems for heart sound signal analysis. J. Med. Eng. Technol. 41(7), 553–563 (2017)

    Google Scholar 

  4. Khan, A.H., Hussain, M., Malik, M.K.: Arrhythmia classification techniques using deep neural network. Complexity 2021 (2021)

    Google Scholar 

  5. Yıldırım, Ö., Pławiak, P., Tan, R.-S., Acharya, U.R.: Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Comput. Biol. Med. 102, 411–420 (2018). https://doi.org/10.1016/j.compbiomed.2018.09.009

    Article  Google Scholar 

  6. Hannun, A.Y., et al.: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 25(1), 65–69 (2019)

    Article  Google Scholar 

  7. Yildirim, O., Talo, M., Ciaccio, E.J., Tan, R.S., Acharya, U.R.: Accurate deep neural network model to detect cardiac arrhythmia on more than 10,000 individual subject ECG records. Comput. Methods Programs Biomed. 197, 105740 (2020)

    Google Scholar 

  8. Ullah, A., Anwar, S.M., Bilal, M., Mehmood, R.M.: Classification of arrhythmia by using deep learning with 2-D ECG spectral image representation. Remote Sensing 12(10), 1685 (2020). https://doi.org/10.3390/rs12101685

    Article  Google Scholar 

  9. Izci, E., Ozdemir, M.A., Degirmenci, M., Akan, A.: Cardiac arrhythmia detection from 2d ecg images by using deep learning technique. In: 2019 Medical Technologies Congress (TIPTEKNO), pp. 1–4. IEEE (2019)

    Google Scholar 

  10. Alfaras, M., Soriano, M.C., Ortín, S.: A fast machine learning model for ECG-based heartbeat classification and arrhythmia detection. Front. Phys. 7, 103 (2019)

    Article  Google Scholar 

  11. Rath, A., Mishra, D., Panda, G., Satapathy, S.C.: Heart disease detection using deep learning methods from imbalanced ECG samples. Biomed. Signal Process. Control. 68, 102820 (2021)

    Google Scholar 

  12. Wang, J., et al.: Detecting cardiovascular disease from mammograms with deep learning. IEEE Trans. Med. Imaging 36(5), 1172–1181 (2017). https://doi.org/10.1109/TMI.2017.2655486

    Article  Google Scholar 

  13. Li, F., Tang, H., Shang, S., Mathiak, K., Cong, F.: Classification of heart sounds using convolutional neural network. Appl. Sci. 10(11) (2020)

    Google Scholar 

  14. Raza, A., Mehmood, A., Ullah, S., Ahmad, M., Choi, G.S., On, B.-W.: Heartbeat sound signal classification using deep learning. Sensors 19(21), 4819 (2019). https://doi.org/10.3390/s19214819

    Article  Google Scholar 

  15. Baccouche, A., Garcia-Zapirain, B., Olea, C.C., Elmaghraby, A.: Ensemble deep learning models for heart disease classification: A case study from Mexico. Information 11(4), 207 (2020). https://doi.org/10.3390/info11040207

    Article  Google Scholar 

  16. Kusuma, S., Udayan, J.D.: Machine learning and deep learning methods in heart disease (HD) research. Int. J. Pure Appl. Math. 119, 1483–1496 (2018)

    Google Scholar 

  17. Brunese, L., Martinelli, F., Mercaldo, F., Santone, A.: Deep learning for heart disease detection through cardiac sounds. Procedia Comput. Sci. 176, 2202–2211 (2020)

    Article  Google Scholar 

  18. Shuvo, S.B., Ali, S.N., Swapnil, S.I., Al-Rakhami, M.S., Gumaei, A.: CardioXNet: A novel lightweight deep learning framework for cardiovascular disease classification using heart sound recordings. IEEE Access 9 (2021)

    Google Scholar 

  19. Rajasekaran, C., Jayanthi, K.B., Sudha, S., Kuchelar, R.: Automated diagnosis of cardiovascular disease through measurement of intima media thickness using deep neural networks. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6636–6639. IEEE (2019)

    Google Scholar 

  20. Kumar, N., Das, N.N., Gupta, D., Gupta, K., Bindra, J.: Efficient automated disease diagnosis using machine learning models. J. Healthc. Eng. 2021 (2021)

    Google Scholar 

  21. Mohan, S., Thirumalai, C., Srivastava, G.: Effective heart disease prediction using hybrid machine learning techniques. IEEE Access 7 (2019)

    Google Scholar 

  22. Pasha, S.N., Ramesh, D., Mohmmad, S., Harshavardhan, A.: Cardiovascular disease prediction using deep learning techniques. In: IOP Conference Series: Materials Science and Engineering, vol. 981, no. 2, p. 022006. IOP Publishing (2020)

    Google Scholar 

  23. Miao, K.H., Miao, J.H.: Coronary heart disease diagnosis using deep neural networks. Int. J. Adv. Comput. Sci. Appl 9(10), 1–8 (2018)

    Google Scholar 

  24. Ali, F., et al..: A smart healthcare monitoring system for heart disease prediction based on ensemble deep learning and feature fusion. Inf. Fusion. 63, 208–222 (2020)

    Google Scholar 

  25. Alarsan, F.I., Younes, M.: Analysis and classification of heart diseases using heartbeat features and machine learning algorithms. Journal of Big Data 6(1), 1–15 (2019). https://doi.org/10.1186/s40537-019-0244-x

    Article  Google Scholar 

  26. Sharma, S., Parmar, M.: Heart diseases prediction using deep learning neural network model. International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278–3075, vol. 9, Issue 3, January 2020

    Google Scholar 

  27. Jambukia, S.H., Dabhi, V.K., Prajapati, H.B.: Classification of ECG signals using machine learning techniques: A survey. In: 2015 International Conference on Advances in Computer Engineering and Applications, pp. 714–721. IEEE (2015)

    Google Scholar 

  28. Berkaya, S.K., Uysal, A.K., Gunal, E.S., Ergin, S., Gunal, S., Gulmezoglu, M.B.: A survey on ECG analysis. Biomed. Signal Process. Control. 43, 216–235 (2018)

    Google Scholar 

  29. Luz, E.J.da S., Schwartz, W.R., Cámara-Chávez, G., Menotti, D.: ECG-based heartbeat classification for arrhythmia detection: a survey. Comput. Meth. Prog. Biomed. 127, 144–164 (2016)

    Google Scholar 

  30. Deekshatulu, B.L., Chandra, P.: Classification of heart disease using k-nearest neighbor and genetic algorithm. Procedia Technology. 10, 85–94 (2013)

    Google Scholar 

  31. Hernandez, K.A.L., Rienmüller, T., Baumgartner, D., Baumgartner, C.: Deep learning in spatiotemporal cardiac imaging: a review of methodologies and clinical usability. Comput. Biolo. Med. 104200 (2020)

    Google Scholar 

  32. Qin, C., Qiu, H., Tarroni, G., Jinming, Bai, W., Rueckert, D: Deep learning for cardiac image segmentation: a review. Front. Cardiovasc. Med. 7, 25 (2020)

    Google Scholar 

  33. Murawwat, S., Asif, H.M., Ijaz, S., Malik, M.I., Raahemifar, K.: Denoising and classification of arrhythmia using MEMD and ANN. Alex. Eng. J. (2021)

    Google Scholar 

  34. Wu, M., Lu, Y., Yang, W., Wong, S.Y.: A study on arrhythmia via ECG signal classification using the convolutional neural network. Front. Comput. Neurosci. 14, 106 (2020)

    Google Scholar 

  35. Haseena, H.H., Mathew, A.T., Paul, J.K.: Fuzzy clustered probabilistic and multi layered feed forward neural networks for electrocardiogram arrhythmia classification. J. Med. Syst. 35(2), 179–188 (2011). https://doi.org/10.1007/s10916-009-9355-9

    Article  Google Scholar 

  36. Javadi, M., Arani, S.A.A.A., Sajedin, A., Ebrahimpour, R.: Classification of ECG arrhythmia by a modular neural network based on mixture of experts and negatively correlated learning. Biomed. Signal Process. Control 8(3), 289–296 (2013). https://doi.org/10.1016/j.bspc.2012.10.005

    Article  Google Scholar 

  37. Elhaj, F.A., Salim, N., Harris, A.R., Swee, T.T., Ahmed, T.: Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. Computer Methods Programs Biomed 127, 52–63 (2016) (2016)

    Google Scholar 

  38. Afkhami, F., Yazdani, N., Khaniani, M.S., Derakhshan, S.M.: Role of 14-bp HLA-G, INDEL polymorphism in recurrent miscarriage. Glob. J. Health Sci. 8(12), 1–45 (2016). https://doi.org/10.5539/gjhs.v8n12p45

    Article  Google Scholar 

  39. Kutlu, Y., Kuntalp, D.: A multi-stage automatic arrhythmia recognition and classification system. Comput. Biol. Med. 41(1), 37–45 (2011)

    Article  Google Scholar 

  40. Yeh, Y.-C., Wang, W.-J., Chiou, C.W.: Cardiac arrhythmia diagnosis method using linear discriminant analysis on ECG signals. Measurement 42(5), 778–789 (2009). https://doi.org/10.1016/j.measurement.2009.01.004

    Article  Google Scholar 

  41. Homaeinezhad, M.R., Atyabi, S.A., Tavakkoli, E., Toosi, H.N., Ghaffari, A., Ebrahimpour, R.: ECG arrhythmia recognition via a neuro-SVM–KNN hybrid classifier with virtual QRS image-based geometrical features. Expert Syst. Appl. 39(2), 2047–2058 (2012). https://doi.org/10.1016/j.eswa.2011.08.025

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lufiya, G.C., Thomas, J., Aswathy, S.U. (2022). A Survey on Arrhythmia Disease Detection Using Deep Learning Methods. In: Abraham, A., et al. Innovations in Bio-Inspired Computing and Applications. IBICA 2021. Lecture Notes in Networks and Systems, vol 419. Springer, Cham. https://doi.org/10.1007/978-3-030-96299-9_6

Download citation

Publish with us

Policies and ethics