Abstract
There are different clean energy production technologies, including wind energy production. This type of energy, among renewable energies, is one of the least predictable due to the unpredictability of the wind. The wind prediction has been a deeply analysed field since has a considerable share on the green energy production, and the investments on this sector are growing. The efficiency and stability of power production can be increased with a better prediction of the main source of energy, in our case the wind. In this paper, some techniques inspired by “Biological Inspired Optimization Techniques” applied to wind forecast are compared. The wind forecast is very important to be able to estimate the electric energy production in the wind farms. As you know, the energy balance must be checked in the electrical system at every moment. In this study we are going to analyse different methodologies of wind and power prediction for wind farms to understand the method with best results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ji, G., Dong, Z., Wang, D.-F., Han, P., Xu, D-P.: Wind speed conformal prediction in wind farm based on algorithmic randomness theory, July 2008
Eseye, T., Zhang, J., Zheng, D., Ma, H., Jingfu, G.: A double-stage hierarchical ANFIS model for short-term wind power prediction. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA), Beijing, China, pp. 546–551 (2017). https://doi.org/10.1109/ICBDA.2017.8078694
Wang, L., Dong, L., Hao, Y., Liao, X.: Wind power prediction using wavelet transform and chaotic characteristics. In: WNWEC 2009 - 2009 World Non-Grid-Connected Wind Power and Energy Conference, pp. 1–5 (2009). https://doi.org/10.1109/WNWEC.2009.5335780
Mao, M., Cao, Y., Chang, L.: Improved fast short-term wind power prediction model based on superposition of predicted error. In: 2013 4th IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), pp. 1–6 (2013)
Xinyu, Z., Lei, D.: A smooth scheme of wind power generation based on wind power prediction. In: Proceedings 2011 International Conference on Transportation, Mechanical, and Electrical Engineering (TMEE), pp. 958–961 (2011)
Chenhong, Z., Penghui, W., Yuan, Z., Yagang, Z.: Wind speed prediction research based on time series model with residual correction. In: 2017 2nd International Conference on Power and Renewable Energy (ICPRE), Chengdu, China, pp. 466–470 (2017)
Zhang, Y., Sun, H., Guo, K.Y.: Wind power prediction based on PSO-SVR and grey combination model. IEEE Open Access J. (2019)
Vaitheeswaran, S.S., Ventrapragada, V.R.: Wind Power Pattern Prediction in time series measurement data for wind energy prediction modelling using LSTM-GA networks. In: 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–5 (2019)
Zhou, B., Sun, B., Gong, X., Liu, C.: Ultra-short-term prediction of wind power based on EMD and DLSTM. In: 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi’an, China, pp. 1909–1913 (2019)
Li, L., Wang, Y., Liu, Y.: Wind velocity prediction at wind turbine hub height based on CFD model. In: International Conference on Materials for Renewable Energy and Environment (ICMREE) (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Puga, R., Baptista, J., Boaventura, J., Ferreira, J., Madureira, A. (2022). State of the Art of Wind and Power Prediction for Wind Farms. In: Abraham, A., et al. Innovations in Bio-Inspired Computing and Applications. IBICA 2021. Lecture Notes in Networks and Systems, vol 419. Springer, Cham. https://doi.org/10.1007/978-3-030-96299-9_68
Download citation
DOI: https://doi.org/10.1007/978-3-030-96299-9_68
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-96298-2
Online ISBN: 978-3-030-96299-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)