Skip to main content

State of the Art on Advanced Control of Electric Energy Transformation to Hydrogen

  • Conference paper
  • First Online:
Innovations in Bio-Inspired Computing and Applications (IBICA 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 419))

  • 810 Accesses

Abstract

The need for sustainable power production has led to the development of more innovative approaches to production and storage. In light of this hydrogen production through wind power has emerged as sufficient in ensuring that the objectives of the Paris Agreement are made. This paper discusses the state-of-art models and controls used in ensuring that greater efficiency is achieved in the processes of energy to hydrogen transformation. The paper concludes with a comparison of the models and determination of one which suffices in ensuring that hydrogen/energy transformation is more efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rezaei, M., Khozani, N., Jafari, N.: Wind energy utilization for hydrogen production in an underdeveloped country: an economic investigation. Renew. Energy 147, 1044–1057 (2020)

    Article  Google Scholar 

  2. Office of Energy Efficiency Renewable Energy. Hydrogen Production: Electrolysis. https://www.energy.gov/eere/fuelcells/hydrogenproduction-electrolysis

  3. Zhou, T., Francois, B.: Modeling and control design of hydrogen production process for an active hydrogen/wind hybrid power system. Int. J. Hydrogen Energy 34, 21–30 (2009)

    Article  Google Scholar 

  4. Mostafaeipour, A., Qolipour, M., Goudarzi, H.: Feasibility of using wind turbines for renewable hydrogen production in Firuzkuh. Iran. Front. Energy 13(3), 494–505 (2019). https://doi.org/10.1007/s11708-018-05346

    Article  Google Scholar 

  5. Fernandez-Guillamon, A., Das, K., Cutululis, N.: Offshore wind power integration into future power systems: overview and trends. J. Mar. Sci. Eng. 7, 399 (2019). https://doi.org/10.3390/jmse7110399

  6. IRENA: Hydrogen from renewable power: Technology outlook for the energy transition, International Renewable Energy Agency, Abu Dhabi (2018)

    Google Scholar 

  7. IRENA: Hydrogen: A renewable energy perspective, International Renewable Energy Agency, Abu Dhabi (2019)

    Google Scholar 

  8. Gondal, I., Masood, A., Khan, R.: Green hydrogen production potential for developing a hydrogen economy in Pakistan. Int. J. Hydrogen Energy 43, 6011–6039 (2018)

    Article  Google Scholar 

  9. Fasihi, M., Breyer, C.: Baseload electricity and hydrogen supply based on hybrid PV-wind power plants. J. Clean. Prod. 243, 118466 (2020)

    Google Scholar 

  10. Zhang, Y., Sun, H., Guo, Y.: Integration design and operation strategy of multi-energy hybrid system including renewable energies, batteries, and hydrogen. Energies 13, 5463 (2020). https://doi.org/10.3390/en13205463

  11. Li, Z., Guo, P., Ham, R., Sun, H.: Current status and development trend of wind power generation-based hydrogen production technology. Energy Explor. Exploit. 37(1), 5–25 (2019)

    Article  Google Scholar 

  12. Mitra, P., Zhang, L., Harnefors, L.: Offshore wind integration to a weak grid by VSCs-HVDC links using power-synchronization control: a case study. IEEE Trans. Power Deliv. 29, 453–461 (2013)

    Article  Google Scholar 

  13. Reed, G.F., Al Hassan, H.A., Korytowski, M.J., Lewis, P.T., Grainger, B.M.: Comparison of HVAC and HVDC solutions for offshore wind farms with a procedure for system economic evaluation. In: Proceedings of the 2013 IEEE Energytech, Cleveland, OH, USA, 21–23 May 2013, pp. 1–7 (2013)

    Google Scholar 

  14. Guidi, G., Fosso, O.: Investment cost of HVAC cable reactive power compensation offshore. In: Proceedings of the 2012 IEEE International Energy Conference and Exhibition (ENERGYCON), Florence, Italy, 9–12 September 2012, pp. 299–304 (2012)

    Google Scholar 

  15. Hur, D.: Economic considerations underlying the adoption of HVDC and HVAC for the connection of an offshore wind farm in Korea. J. Electr. Eng. Technol. 7, 157–162 (2012)

    Article  Google Scholar 

  16. Sharma, R., Rasmussen, T.W., Jensen, K.H., Akamatov, V.: Modular VSCs converter based HVDC power transmission from offshore wind power plant: compared to the conventional HVAC system. In: Proceedings of the 2010 IEEE Electrical Power Energy Conference, Halifax, NS, Canada, 25–27 August 2010, pp. 1–6 (2010)

    Google Scholar 

  17. Chen, H., Johnson, M.H., Aliprantis, D.C.: Low-frequency AC transmission for offshore wind power. IEEE Trans. Power Deliv. 28, 2236–2244 (2013)

    Article  Google Scholar 

  18. Negra, N.B., Todorovic, J., Ackermann, T.: Loss evaluation of HVAC and HVDC transmission solutions for large offshore wind farms. Electr. Power Syst. Res. 76, 916–927 (2006)

    Article  Google Scholar 

  19. Stoutenburg, E., Jacobson, M.: Optimizing offshore transmission links for marine renewable energy farms. In: Proceedings of the OCEANS 2010 MTS/IEEE SEATTLE, Seattle, WA, USA, 20–23 September 2010

    Google Scholar 

  20. Bresesti, P., Kling, W.L., Hendriks, R.L., Vailati, R.: HVDC connection of offshore wind farms to the transmission system. IEEE Trans. Energy Convers. 22, 37–43 (2007)

    Article  Google Scholar 

  21. Gomis-Bellmunt, O., Liang, J., Ekanayake, J., King, R., Jenkins, N.: Topologies of multiterminal HVDC-VSCs transmission for large offshore wind farms. Electr. Power Syst. Res. 81, 271–281 (2011)

    Article  Google Scholar 

  22. Legorburu, I., Johnson, K.R., Kerr, S.A.: Multi-use maritime platforms North Sea oil and offshore wind: opportunity and risk. Ocean Coast. Manag. 160, 75–85 (2018)

    Article  Google Scholar 

  23. Zhang, Y., Ravishankar, J., Fletcher, J., Li, R., Han, M.: Review of modular multilevel converter based multi-terminal HVDC systems for offshore wind power transmission. Renew. Sustain. Energy Rev. 61, 572–586 (2016)

    Article  Google Scholar 

  24. De Alegrıa, I.M., Martin, J.L., Kortabarria, I., Andreu, J., Ereno, P.I.: Transmission alternatives for offshore electrical power. Renew. Sustain. Energy Rev. 13, 1027–1038 (2009)

    Article  Google Scholar 

  25. Rourke, F.O., Boyle, F., Reynolds, A.: Marine current energy devices: current status and possible future applications in Ireland. Renew. Sustain. Energy Rev. 14, 1026–1036 (2010)

    Article  Google Scholar 

  26. Chou, C.J., Wu, Y.K., Han, G.Y., Lee, C.Y.: Comparative evaluation of the HVDC and HVAC links integrated in a large offshore wind farm—An actual case study in Taiwan. IEEE Trans. Ind. Appl. 48, 1639–1648 (2012)

    Article  Google Scholar 

  27. Colmenar-Santos, A., Perera-Perez, J., Borge-Diez, D., de Palacio Rodríguez, C.: Offshore wind energy: a review of the current status, challenges and future development in Spain. Renew. Sustain. Energy Rev. 64, 1–18 (2016)

    Google Scholar 

  28. Erlich, I., Shewarega, F., Feltes, C., Koch, F.W., Fortmann, J.: Offshore wind power generation technologies. Proc. IEEE 101, 891–905 (2013)

    Article  Google Scholar 

  29. Segura, I., Perez-Navarro, A., Sanchez, C., Ibañ, E.Z.F., Payá, J., Bernal, E.: Technical requirements for economical viability of electricity generation in stabilized wind parks. Hydrog. Energy 32(16), 3811–3819 (2007)

    Google Scholar 

  30. Fernandez, R.D., Battaiotto, P.E., Mantz, R.J.: Impact of wind farms voltage regulation on the stability of the network frequency. Hydrog. Energy 33(13), 3543–3548 (2008)

    Google Scholar 

  31. Thanapalan, K., Guwy, P.: Model-based controller design for hydrogen fuel cell systems. In: The Proceedings of IFAC World Congress 2008, Seoul, Korea, pp. 4636–4641 (2008)

    Google Scholar 

  32. Yanting, L., Yan, S., Lianjie, S.: An ARMAX model for forecasting the power output of a grid-connected photovoltaic system. Renew. Energy 66(C), 78–89 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judite Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Puga, R., Boaventura, J., Ferreira, J., Madureira, A. (2022). State of the Art on Advanced Control of Electric Energy Transformation to Hydrogen. In: Abraham, A., et al. Innovations in Bio-Inspired Computing and Applications. IBICA 2021. Lecture Notes in Networks and Systems, vol 419. Springer, Cham. https://doi.org/10.1007/978-3-030-96299-9_69

Download citation

Publish with us

Policies and ethics