Skip to main content

Estimation Techniques for Scrum: A Qualitative Systematic Study

  • Conference paper
  • First Online:
Innovations in Bio-Inspired Computing and Applications (IBICA 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 419))

  • 1052 Accesses

Abstract

Every competitive IT industry cannot avoid underestimating their projects’ effort, cost, and time. Some scrum project is completed delayed and undergoes difficulties due to over budgeting and a lack of needed functions. Software project failures are caused by incorrect and imprecise estimation; thus, it should be taken into account. A substantial change is required when Agile-based processes (e.g., Scrum) are introduced to the industry. The analysis is still difficult with Agile since requirements are constantly changing. Projects, individuals, and resistance issues, incorrect usage of cost factors, unawareness of regression testing work, readability of software requirements size as well as its related complexities, and so forth are all causes behind the difference in anticipated and real effort. This work analysis examined several publications and prospective researchers striving to narrow the actual and estimated effort gap. Decision-Based techniques significantly outperformed non-Decision Based and conventional estimating strategies by extensive literature analysis. We found that the regression test based estimation technique should be improved for accurate estimation of effort. However, scrum still needs a significant estimation technique to resolve the over budgeting issue. This study discussed the machine learning techniques, there proficiencies for estimation and flaws. The overall effort is the sum of all sprints components’ efforts, and it repeats after the prospective deliverable version.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Steghöfer, J.P., Knauss, E., Alégroth, E., Hammouda, I., Burden, H., Ericsson, M.: Teaching agile-addressing the conflict between project delivery and application of agile methods. In: 2016 IEEE/ACM 38th International Conference on Software Engineering Companion (ICSE-C), pp. 303–312. IEEE, May 2016

    Google Scholar 

  2. Meyer, B.: Making sense of agile methods. IEEE Softw. 35(2), 91–94 (2018)

    Article  Google Scholar 

  3. Martin, A., Anslow, C., Johnson, D.: Teaching agile methods to software engineering professionals: 10 years, 1000 release plans. In: Baumeister, H., Lichter, H., Riebisch, M. (eds.) Agile Processes in Software Engineering and Extreme Programming. XP 2017. LNBIP, vol. 283, pp. 151–166. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57633-6_10

    Chapter  Google Scholar 

  4. Butt, S.A.: Study of agile methodology with the cloud. Pac. Sci. Rev. B Humanit. Soc. Sci. 2(1), 22–28 (2016)

    Google Scholar 

  5. Fuchs, C.: Adapting (to) agile methods: exploring the interplay of agile methods and organizational features (2019)

    Google Scholar 

  6. Przybyłek, A., Kotecka, D.: Making agile retrospectives more awesome. In: 2017 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 1211–1216. IEEE, September 2017

    Google Scholar 

  7. Tessem, B.: The customer effect in agile system development projects. A process tracing case study. Procedia Comput. Sci. 121, 244–251 (2017)

    Article  Google Scholar 

  8. Butt, S.A., Abbas, S.A., Ahsan, M.: Software development life cycle & software quality measuring types. Asian J. Math. Comput. Res. 11(2), 112–122 (2016)

    Google Scholar 

  9. Kim, S.I., Lee, J.Y.: Walk-Through screening center for COVID-19: an accessible and efficient screening system in a pandemic situation. J. Korean Med. Sci. 35(15), e154 (2020)

    Article  Google Scholar 

  10. Janssen, M., van der Voort, H.: Agile and adaptive governance in crisis response: lessons from the COVID-19 pandemic. Int. J. Inf. Manag. 55, 102180 (2020)

    Article  Google Scholar 

  11. Asare, A.O., Addo, P.C., Sarpong, E.O., Kotei, D.: COVID-19: optimizing business performance through agile business intelligence and data analytics. Open J. Bus. Manag. 8(5), 2071–2080 (2020)

    Article  Google Scholar 

  12. Mishra, A., Misra, S.: People management in the software industry: the key to success. ACM SIGSOFT Softw. Eng. Notes 35(6), 1–4 (2010)

    Article  Google Scholar 

  13. Fernández-Sanz, L., Gómez-Pérez, J., Diez-Folledo, T.I., Misra, S.: Researching human and organizational factors impact for decisions on software quality. In: Proceedings of the11th International Conference on Software Engineering and Applications, pp. 283–289 (2016)

    Google Scholar 

  14. Fernández-Sanz, L., Misra, S.: Influence of human factors in software quality and productivity. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) Computational Science and Its Applications - ICCSA 2011. LNCS, vol. 6786, pp. 257–269. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21934-4_22

    Chapter  Google Scholar 

  15. Butt, S.A., Misra, S., Anjum, M.W., Hassan, S.A.: Agile project development issues during COVID-19. In: Przybyłek, A., Miler, J., Poth, A., Riel, A. (eds.) Lean and Agile Software Development. LASD 2021. LNBIP, vol. 408, pp. 59–70. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67084-9_4

    Chapter  Google Scholar 

  16. Butt, S.A.: Analysis of unfair means cases in computer-based examination systems. Pac. Sci. Rev. B Humanit. Soc. Sci. 2(2), 75–79 (2016)

    Google Scholar 

  17. Przybyłek, A., Zakrzewski, M.: Adopting collaborative games into agile requirements engineering (2018)

    Google Scholar 

  18. Al Asheeri, M.M., Hammad, M.: Machine learning models for software cost estimation. In: 2019 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), pp. 1–6. IEEE, September 2019

    Google Scholar 

  19. Rao, C.P., Siva Kumar, P., Rama Sree, S., Devi, J.: An agile effort estimation based on story points using machine learning techniques. In: Bhateja, V., Tavares, J., Rani, B., Prasad, V., Raju, K. (eds.) Proceedings of the Second International Conference on Computational Intelligence and Informatics. AISC, vol. 712, pp. 209–219. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-8228-3_20

    Chapter  Google Scholar 

  20. Periyasamy, K., Chianelli, J.: A project tracking tool for scrum projects with machine learning support for cost estimation. In: EPiC Series in Computing, vol. 76, pp. 86–94 (2021)

    Google Scholar 

  21. Adnan, M., Afzal, M.: Ontology based multiagent effort estimation system for scrum agile method. IEEE Access 5, 25993–26005 (2017)

    Article  Google Scholar 

  22. Kokol, P., Zagoranski, S., Kokol, M.: Software development with scrum: a bibliometric analysis and profile fi (2020)

    Google Scholar 

  23. Sharma, A., Chaudhary, N.: Linear regression model for agile software development effort estimation. In: 2020 5th IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE), pp. 1–4. IEEE, December 2020

    Google Scholar 

  24. Syahputri, I.W., Ferdiana, R., Kusumawardani, S.S.: Does system based on decision based need software engineering method? Systematic review. In: 2020 Fifth International Conference on Informatics and Computing (ICIC), pp. 1–6. IEEE, November 2020

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Misra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jorge-Martinez, D., Misra, S., Butt, S.A., Ayeni, F. (2022). Estimation Techniques for Scrum: A Qualitative Systematic Study. In: Abraham, A., et al. Innovations in Bio-Inspired Computing and Applications. IBICA 2021. Lecture Notes in Networks and Systems, vol 419. Springer, Cham. https://doi.org/10.1007/978-3-030-96299-9_77

Download citation

Publish with us

Policies and ethics