Skip to main content

How Latest Computer Science Research Copes with COVID-19?

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2021)

Abstract

Towards the end of 2019, one of the most dangerous viruses in human history emerged. This is the SARS CoV-2 coronavirus, responsible for COVID-19. This virus, originally spread from the Chinese city of Wuhan, continues to propagate all over the world and cause considerable loss of life. Since that time, several investigations have been carried out, not only in medicine, but also in computer science and related fields. This paper aims at reviewing the latest work on the infectious disease COVID-19 in order to identify the latest techniques, datasets, and tools that have been developed. In particular, we examine the latest approaches and tools in three trending fields, namely Deep Learning, Geographic Information Systems and Knowledge-Based Systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.bsg.ox.ac.uk/.

  2. 2.

    https://www.ilo.org/global/lang{en/index.htm.

  3. 3.

    https://www.ecdc.europa.eu/.

  4. 4.

    https://virtuoso.openlinksw.com.

References

  1. Basiri, M.E., Nemati, S., Abdar, M., Asadi, S., Acharrya, U.R.: A novel fusion-based deep learning model for sentiment analysis of COVID-19 tweets. Knowl. Based Syst. 228, 107242 (2021)

    Article  Google Scholar 

  2. dos Santos, C., Gatti, M.: Deep convolutional neural networks for sentiment analysis of short texts. In: Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers. pp. 69–78. Dublin City University and Association for Computational Linguistics, Dublin, Ireland (2014)

    Google Scholar 

  3. Jabreel, M., Hassan, F., Moreno, A.: Target-dependent sentiment analysis of tweets using bidirectional gated recurrent neural networks. In: Hatzilygeroudis, I., Palade, V. (eds.) Advances in Hybridization of Intelligent Methods: Models, Systems and Applications, pp. 39–55. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-66790-4

    Chapter  Google Scholar 

  4. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of Tricks for Efficient Text Classification. arXiv:1607.01759 [cs] (2016)

  5. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv:1910.01108 [cs] (2020)

  6. Wang, S., Manning, C.: Baselines and bigrams: simple, good sentiment and topic classification. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). pp. 90–94 (2012)

    Google Scholar 

  7. Chandra, R., Krishna, A.: COVID-19 sentiment analysis via deep learning during the rise of novel cases. PLoS ONE 16, e0255615 (2021)

    Article  Google Scholar 

  8. Mahdavi, M., et al.: A machine learning based exploration of COVID-19 mortality risk. PLoS ONE 16, e0252384 (2021)

    Article  Google Scholar 

  9. Yu, C.-S., et al.: A COVID-19 pandemic artificial intelligence–based system with deep learning forecasting and automatic statistical data acquisition: development and implementation study. J. Med. Int. Res. 23, e27806 (2021)

    Google Scholar 

  10. Sedik, A., Hammad, M., Abd El-Samie, F.E., Gupta, B.B., Abd El-Latif, A.A.: Efficient deep learning approach for augmented detection of Coronavirus disease. Neural Comput & Appl. (2021)

    Google Scholar 

  11. Zhou, C., et al.: COVID-19: Challenges to GIS with Big Data. Geograph. Sustain. 1(1), 77–87 (2020)

    Article  Google Scholar 

  12. Kamel Boulos, M.N., Geraghty, E.M.: Geographical tracking and mapping of coronavirus disease COVID-19/severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic and associated events around the world: how 21st century GIS technologies are supporting the global fight against outbreaks and epidemics. Int. J. Health Geogr. 19, 8 (2020)

    Article  Google Scholar 

  13. Yahya, B.M., Yahya, F.S., Thannoun, R.G.: COVID-19 prediction analysis using artificial intelligence procedures and GIS spatial analyst: a case study for Iraq. Appl Geomat. 13, 481–491 (2021)

    Article  Google Scholar 

  14. Nasiri, R., et al.: Spatio-temporal analysis of COVID-19 incidence rate using GIS: a case study—Tehran metropolitan. Iran. Geo J. (2021)

    Google Scholar 

  15. Studer, R., Benjamins, V.R., Fensel, D.: Knowledge engineering: principles and methods. Data Knowl. Eng. 25, 161–197 (1998)

    Article  Google Scholar 

  16. Bayoudhi, L., Sassi, N., Jaziri, W.: A Survey on Versioning Approaches and Tools. In: Abraham, A., Piuri, V., Gandhi, N., Siarry, P., Kaklauskas, A., Madureira, A. (eds.) Intelligent Systems Design and Applications. pp. 1155–1164. Springer International Publishing (2020). https://doi.org/10.1007/978-3-030-71187-0_107

  17. Bayoudhi, L., Sassi, N., Jaziri, W.: Towards a semantic querying approach for a multi-version OWL 2 DL ontology. Int. J. Comput. Inf. Syst. Ind. Manage. (IJCISIM). 13, 80–90 (2021)

    Google Scholar 

  18. Ehrlinger, L., Wöß, W.: Towards a definition of knowledge graphs. In: SEMANTiCS (Posters, Demos, SuCCESS). pp. 1–4 (2016)

    Google Scholar 

  19. Bayoudhi, L., Sassi, N., Jaziri, W.: An overview of biomedical ontologies for pandemics and infectious diseases representation. Procedia Comput. Sci. 192, 4249–4258 (2021)

    Article  Google Scholar 

  20. Qundus, J.A., Schafermeier, R., Karam, N., Peikert, S., Paschke, A.: ROC: an ontology for country responses towards COVID-19. In: Proceedings of the Conference on Digital Curation Technologies (Qurator 2021), Berlin, Germany, February 8th–12th, 2021 (2021)

    Google Scholar 

  21. Motik, B., et al.: OWL 2 Web Ontology Language - Structural Specification and Functional-Style Syntax (Second Edition), https://www.w3.org/TR/owl2-syntax/

  22. Musen, M.A.: The protégé project. AI Matters. 1, 4–12 (2015)

    Article  Google Scholar 

  23. Babcock, S., Beverley, J., Cowell, L.G., Smith, B.: The infectious disease ontology in the age of COVID-19. J. Biomed. Semant. 12, 13 (2021)

    Article  Google Scholar 

  24. Virus Infectious Disease Ontology - Summary | NCBO BioPortal, https://bioportal.bioontology.org/ontologies/VIDO. Accessed 14 Oct 2021

  25. Liu, Y., et al.: Ontological modeling and analysis of experimentally or clinically verified drugs against coronavirus infection. Scient. Data. 8, 16 (2021)

    Article  Google Scholar 

  26. Beverley, J., Smith, B., Babcock, S., Cowell, L.G.: Coordinating Coronavirus Research: The COVID-19 Infectious Disease Ontology. https://osf.io/5bx8c/. (2020)

  27. Smith, B., et al.: The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat. Biotechnol. 25(11), 1251–1255 (2007)

    Article  Google Scholar 

  28. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL reasoner. Web Semant. Sci. Serv. Agents World Wide Web. 5, 51–53 (2007)

    Article  Google Scholar 

  29. Shearer, R., Motik, B., Horrocks, I.: Hermit: a Highly-efficient OWL REasoner. In: Proceedings of the 5th International Workshop on OWL: Experiences and Directions (OWLED 2008). pp. 91–100 (2008)

    Google Scholar 

  30. Bolock, A.E., Abdennadher, S., Herbert, C.: An ontology-based framework for psychological monitoring in education during the covid-19 pandemic. Front. Psychol. 12, 2879 (2021). https://doi.org/10.3389/fpsyg.2021.673586

    Article  Google Scholar 

  31. Turki, H., et al.: Representing COVID-19 information in collaborative knowledge graphs: the case of Wikidata. Semant. Web. 13(02), 233–264 (2022)

    Google Scholar 

  32. Kim, T., Yun, Y., Kim, N.: Deep learning-based knowledge graph generation for COVID-19. Sustainability 13, 2276 (2021)

    Article  Google Scholar 

  33. Yan, V.K.C., et al.: Drug repurposing for the treatment of COVID-19: a knowledge graph approach. Adv. Therapeut. 4, 2100055 (2021)

    Article  Google Scholar 

  34. Thorn, C.F., Klein, T.E., Altman, R.B.: PharmGKB: the pharmacogenomics knowledge base. Methods Mol. Biol. 1015, 311–320 (2013)

    Article  Google Scholar 

  35. Wishart, D.S., et al.: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucl. Acids Res. 46(D1), D1074–D1082 (2018)

    Article  Google Scholar 

  36. Oughtred, R., et al.: The BioGRID interaction database: 2019 update. Nucleic Acids Res. 47, D529–D541 (2019)

    Article  Google Scholar 

  37. Davis, A.P., et al.: Comparative Toxicogenomics Database (CTD): update 2021. Nucleic Acids Res. 49, D1138–D1143 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bayoudhi, L., Sassi, N., Jaziri, W. (2022). How Latest Computer Science Research Copes with COVID-19?. In: Abraham, A., Gandhi, N., Hanne, T., Hong, TP., Nogueira Rios, T., Ding, W. (eds) Intelligent Systems Design and Applications. ISDA 2021. Lecture Notes in Networks and Systems, vol 418. Springer, Cham. https://doi.org/10.1007/978-3-030-96308-8_112

Download citation

Publish with us

Policies and ethics