Skip to main content

Comparative Study on Deep Learning Methods for Apple Ripeness Estimation on Tree

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 418))

  • 1877 Accesses

Abstract

In this paper, we propose an apple ripeness detection system based on deep learning methods. Three deep learning models, namely, Mask R-CNN, YOLOv5 and YOLOx, representing two-stage and one-stage object detectors, are employed to conduct apple fruit ripeness detection. Digital images related to three apple ripeness stages are collected from real scene to form dataset used for training and testing the three models. We conclude that YOLOv5, as the representative of one-stage algorithm, outperforms Mask R-CNN, as the representative of two-stage models in speed and mean average precision. In addition, YOLOv5 exceed YOLOx, an other one stage detector, in speed and mean average precision. Results showed the performance achieved by the ripeness detection system that provides up to 0.99 mean average precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arunkumar, M., Rajendran, A., Gunasri, S., Kowsalya, M., Krithika, C.K.: Non-destructive fruit maturity detection methodology-a review. Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2020.12.1094

  2. Azarmdel, H., Jahanbakhshi, A., Mohtasebi, S.S., Muñoz, A.R.: Evaluation of image processing technique as an expert system in mulberry fruit grading based on ripeness level using artificial neural networks (ANNs) and support vector machine (SVM). Postharvest Biol. Technol. 166, 111201 (2020)

    Article  Google Scholar 

  3. Bargoti, S., Underwood, J.: Deep fruit detection in orchards. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3626–3633. IEEE (2017)

    Google Scholar 

  4. Brahimi, M., Arsenovic, M., Laraba, S., Sladojevic, S., Boukhalfa, K., Moussaoui, A.: Deep learning for plant diseases: detection and saliency map visualisation. In: Zhou, J., Chen, F. (eds.) Human and Machine Learning. HIS, pp. 93–117. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90403-0_6

    Chapter  Google Scholar 

  5. Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: YOLOX: exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430 (2021)

  6. Goel, N., Sehgal, P.: Fuzzy classification of pre-harvest tomatoes for ripeness estimation-an approach based on automatic rule learning using decision tree. Appl. Soft Comput. 36, 45–56 (2015)

    Article  Google Scholar 

  7. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep learning, vol. 1. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  8. Hameed, K., Chai, D., Rassau, A.: A comprehensive review of fruit and vegetable classification techniques. Image Vis. Comput. 80, 24–44 (2018)

    Article  Google Scholar 

  9. Hamza, R., Chtourou, M.: Apple ripeness estimation using artificial neural network. In: 2018 International Conference on High Performance Computing & Simulation (HPCS), pp. 229–234. IEEE (2018)

    Google Scholar 

  10. Hamza, R., Chtourou, M.: Design of fuzzy inference system for apple ripeness estimation using gradient method. IET Image Proc. 14(3), 561–569 (2019)

    Article  Google Scholar 

  11. Hasan, A.S.M., Sohel, F., Diepeveen, D., Laga, H., Jones, M.G.K.: A survey of deep learning techniques for weed detection from images. Comput. Electron. Agric. 184, 106067 (2021)

    Article  Google Scholar 

  12. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2961–2969, October 2017

    Google Scholar 

  13. Jiao, L., et al.: A survey of deep learning-based object detection. IEEE Access 7, 128837–128868 (2019)

    Article  Google Scholar 

  14. Jocher, G.: ultralytics/yolov5: v3.1 - bug fixes and performance improvements, October 2020

    Google Scholar 

  15. Junos, M.H., Mohd Khairuddin, A.S., Thannirmalai, S., Dahari, M.: An optimized yolo-based object detection model for crop harvesting system. IET Image Process. 15(9), 2112–2125 (2021)

    Article  Google Scholar 

  16. Kamilaris, A., Prenafeta-Boldú, F.X.: Deep learning in agriculture: a survey. Comput. Electron. Agric. 147, 70–90 (2018)

    Article  Google Scholar 

  17. Kang, H., Chen, C.: Fast implementation of real-time fruit detection in apple orchards using deep learning. Comput. Electron. Agric. 168, 105108 (2020)

    Article  Google Scholar 

  18. Kuznetsova, A., Maleva, T., Soloviev, V.: Using YOLOv3 algorithm with pre-and post-processing for apple detection in fruit-harvesting robot. Agronomy 10(7), 1016 (2020)

    Article  Google Scholar 

  19. Li, B., Lecourt, J., Bishop, G.: Advances in non-destructive early assessment of fruit ripeness towards defining optimal time of harvest and yield prediction-a review. Plants 7(1), 3 (2018)

    Article  Google Scholar 

  20. Lin, T., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  21. Mim, F.S., Galib, S.M., Hasan, M.F., Jerin, S.A.: Automatic detection of mango ripening stages-an application of information technology to botany. Sci. Hortic. 237, 156–163 (2018)

    Article  Google Scholar 

  22. Naik, S., Patel, B., Pandey, R.: Shape, size and maturity features extraction with fuzzy classifier for non-destructive mango (Mangifera Indica L., cv. Kesar) grading. In: Technological Innovation in ICT for Agriculture and Rural Development (TIAR), pp. 1–7. IEEE (2015)

    Google Scholar 

  23. Rehman, T.U., Mahmud, M.S., Chang, Y.K., Jin, J., Shin, J.: Current and future applications of statistical machine learning algorithms for agricultural machine vision systems. Comput. Electron. Agric. 156, 585–605 (2019)

    Article  Google Scholar 

  24. The agriculture team at the Australian Centre for Field Robotics. ACFR-multifruit-2016: ACFR Orchard Fruit dataset (2016). Accessed April 2021

    Google Scholar 

  25. Tian, Y., Yang, G., Wang, Z., Wang, H., Li, E., Liang, Z.: Apple detection during different growth stages in orchards using the improved YOLO-V3 model. Comput. Electron. Agric. 157, 417–426 (2019)

    Article  Google Scholar 

  26. Wu, X., Sahoo, D., Hoi, S.C.H.: Recent advances in deep learning for object detection. Neurocomputing 396, 39–64 (2020)

    Article  Google Scholar 

  27. Yang, Yu., Zhang, K., Yang, L., Zhang, D.: Fruit detection for strawberry harvesting robot in non-structural environment based on mask-RCNN. Comput. Electron. Agric. 163, 104846 (2019)

    Article  Google Scholar 

  28. Zhao, Z.-Q., Zheng, P., Shou-tao, X., Xindong, W.: Object detection with deep learning: a review. IEEE Trans. Neural Netw. Learn. Syst. 30(11), 3212–3232 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raja Hamza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hamza, R., Chtourou, M. (2022). Comparative Study on Deep Learning Methods for Apple Ripeness Estimation on Tree. In: Abraham, A., Gandhi, N., Hanne, T., Hong, TP., Nogueira Rios, T., Ding, W. (eds) Intelligent Systems Design and Applications. ISDA 2021. Lecture Notes in Networks and Systems, vol 418. Springer, Cham. https://doi.org/10.1007/978-3-030-96308-8_123

Download citation

Publish with us

Policies and ethics