Skip to main content

Imbalanced Learning for Robust Moving Object Classification in Video Surveillance Applications

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 418))

  • 2088 Accesses

Abstract

In the context of video surveillance applications in outdoor scenes, the moving object classification still remains an active area of research, due to the complexity and the diversity of the real-world constraints. In this context, the class imbalance object distribution is an important factor that can hinder the classification performance and particularly regarding the minority classes. In this paper, our main contribution is to enhance the classification of the moving objects when learning from imbalanced data. Thus, we propose an adequate learning framework for moving object classification fitting imbalanced scenarios. Three series of experiments which were led on a challenging dataset have proved that the proposed algorithm improved efficiently the classification of moving object in the presence of asymmetric class distribution. The reported enhancement regarding the minority class reaches 116% in terms of F-score when compared with standard learning algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xu, H., Li, B., Ramanishka, V., Sigal, L., Saenko, K.: Joint event detection and description in continuous video streams. In: IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, USA, pp. 396–405 (2019)

    Google Scholar 

  2. Avola, D., Bernardi, M., Foresti, G.L.: Fusing depth and colour information for human action recognition. Multimed. Tools Appl. 78(5), 5919–5939 (2018). https://doi.org/10.1007/s11042-018-6875-7

    Article  Google Scholar 

  3. Muchtar, K., Rahman, F., Munggaran, M.R., Dwiyantoro, A.P.J., Dharmadi, R., Nugraha, I.: A unified smart surveillance system incorporating adaptive foreground extraction and deep learning-based classification. In: Proceedings of the International Conference on Artificial Intelligence in Information and Communication (ICAIIC), pp. 302–305 (2019)

    Google Scholar 

  4. Yu, T.T., Win, Z.M.: Enhanced object representation on moving objects classification. In: International Conference on Advanced Information Technologies (ICAIT), Yangon, Myanmar, pp. 177–182 (2019)

    Google Scholar 

  5. Honnit, B., Soulami, K.B., Saidi, M.N., Tamtaoui, A.: Moving objects multi-classification based on information fusion. J. King Saud Univ. Comput. Inf. Sci. (2020)

    Google Scholar 

  6. Ray, K.S., Chakraborty, A., Dutta, S.: Detection, recognition and tracking of moving objects from real-time video via visual vocabulary model and species inspired PSO. arXiv preprint arXiv:1707.05224 (2017)

  7. Mishra, P.K., Saroha, G.P.: Multiple moving object detection and classification using block based feature extraction algorithm and K-NN Classifier. Int. J. Tomogr. Simul. 32(2) (2019)

    Google Scholar 

  8. Shima, R., et al.: Object classification with deep convolutional neural network using spatial information. In: International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Okinawa, Japan, pp. 135–139 (2017)

    Google Scholar 

  9. Barat, C., Ducottet, C.: String representations and distances in deep convolutional neural networks for image classification. Pattern Recognit. 54, 104–115 (2016)

    Article  Google Scholar 

  10. Davis, J., Sharma, V.: Background-subtraction using contour-based fusion of thermal and visible imagery. Comput. Vis. Image Underst. 106(2–3), 162–182 (2007)

    Article  Google Scholar 

  11. St-Laurent, L., Maldague, X., Prevost, D.: Combination of colour and thermal sensors for enhanced object detection. In: 10th International Conference on Information Fusion, Quebec, Canada, pp. 1–8 (2007)

    Google Scholar 

  12. Goyette, N., Jodoin, P.-M., Porikli, F., Konrad, J., Ishwar, P.: Changedetection.net: a new change detection benchmark dataset. In: IEEE Workshop on Change Detection (CDW-2012) at CVPR-2012, Providence, RI, pp. 16–21 (2012)

    Google Scholar 

  13. Chaabane, I., Guermazi, R., Hammami, M.: Impact of sampling on learning asymmetric-entropy decision trees from imbalanced data. In: 23rd Pacific Asia Conference on Information Systems, China (2019)

    Google Scholar 

  14. Chaabane, I., Guermazi, R., Hammami, M.: Adapted pruning scheme for the framework of imbalanced data-sets. Procedia Comput. Sci. 112, pp. 1542–1553 (2017). ISSN 1877-0509

    Google Scholar 

  15. Li, Z., Huang, M., Liu, G., Jiang, C.: A hybrid method with dynamic weighted entropy for handling the problem of class imbalance with overlap in credit card fraud detection. Expert Syst. Appl. 175, 114750 (2021)

    Google Scholar 

  16. Zhang, L., Zhang, C., Quan, S., Xiao, H., Kuang, G., Liu, L.: A class imbalance loss for imbalanced object recognition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 2778–2792 (2020)

    Article  Google Scholar 

  17. Elasal, N., Swart, D., Miller, N.: Frame augmentation for imbalanced object detection datasets. J. Comput. Vis. Imaging Syst. 4(1) (2018)

    Google Scholar 

  18. Zhongyuan, W., Sang, J., Zhang, Q., Xiang, H., Cai, B., Xia, X.: Multi-scale vehicle detection for foreground-background class imbalance with improved YOLOv2. Sensors 19(15), 3336 (2019)

    Google Scholar 

  19. Lin, T., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In. IEEE International Conference on Computer Vision (ICCV), Venice, Italy, pp. 2980–2988 (2017)

    Google Scholar 

  20. Guermazi, R., Chaabane, I., Hammami, M.: AECID: asymmetric entropy for classifying imbalanced data. Inf. Sci. 467, 373–397 (2018)

    Google Scholar 

  21. Johnson, J.M., Khoshgoftaar, T.M.: Survey on deep learning with class imbalance. J. Big Data 6, 1–54 (2019)

    Article  Google Scholar 

  22. Boukhriss, R.R., Fendri, E., Hammami, M.: Moving object detection under different weather conditions using full-spectrum light sources. Pattern Recognit. Lett. 129, 205–212 (2020)

    Article  Google Scholar 

  23. Jarraya, S.K., Boukhriss, R.R., Hammami, M., Ben-Abdallah, H.: Cast shadow detection based on semi-supervised learning. In: Campilho, A., Kamel, M. (eds.) ICIAR 2012. LNCS, vol. 7324, pp. 19–26. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31295-3_3

  24. Boukhriss, R.R., Fendri, E., Hammami, M.: Moving object classification in infrared and visible spectra. In: Proceedings of the SPIE 10341, Ninth International Conference on Machine Vision, p. 1034104 (2016)

    Google Scholar 

  25. Joseph, R., Ali, F.: YOLOv3: an incremental improvement. arxiv:1804.02767Comment, Tech Report (2018)

  26. Zhou, Z.-H.: Ensemble Methods: Foundations and Algorithms, 1st. edn. Chapman and Hall/CRC (2012)

    Google Scholar 

  27. Chaabane, I., Guermazi, R., Hammami, M.: Enhancing techniques for learning decision trees from imbalanced data. Adv. Data Anal. Classif. 14(3), 677–745 (2019). https://doi.org/10.1007/s11634-019-00354-x

    Article  MathSciNet  MATH  Google Scholar 

  28. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  29. Patel, R.K., Giri, V.K.: Feature selection and classification of mechanical fault of an induction motor using random forest classifier. Perspect. Sci. 8, 334–337 (2016)

    Article  Google Scholar 

  30. Shukla, G., Dev Garg, R., Srivastava, H.S., Garg, P.K.: An effective implementation and assessment of a random forest classifier as a soil spatial predictive model. Int. J. Remote Sens. 39(8), 2637–2669 (2018)

    Google Scholar 

  31. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  32. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, pp. 770–778 (2016)

    Google Scholar 

  33. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Image net classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 1097–1105 (2012)

    Google Scholar 

  34. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv, pp. 1409–1556 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boukhriss, R.R., Chaabane, I., Guermazi, R., Fendri, E., Hammami, M. (2022). Imbalanced Learning for Robust Moving Object Classification in Video Surveillance Applications. In: Abraham, A., Gandhi, N., Hanne, T., Hong, TP., Nogueira Rios, T., Ding, W. (eds) Intelligent Systems Design and Applications. ISDA 2021. Lecture Notes in Networks and Systems, vol 418. Springer, Cham. https://doi.org/10.1007/978-3-030-96308-8_18

Download citation

Publish with us

Policies and ethics