Abstract
In the context of video surveillance applications in outdoor scenes, the moving object classification still remains an active area of research, due to the complexity and the diversity of the real-world constraints. In this context, the class imbalance object distribution is an important factor that can hinder the classification performance and particularly regarding the minority classes. In this paper, our main contribution is to enhance the classification of the moving objects when learning from imbalanced data. Thus, we propose an adequate learning framework for moving object classification fitting imbalanced scenarios. Three series of experiments which were led on a challenging dataset have proved that the proposed algorithm improved efficiently the classification of moving object in the presence of asymmetric class distribution. The reported enhancement regarding the minority class reaches 116% in terms of F-score when compared with standard learning algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Xu, H., Li, B., Ramanishka, V., Sigal, L., Saenko, K.: Joint event detection and description in continuous video streams. In: IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, USA, pp. 396–405 (2019)
Avola, D., Bernardi, M., Foresti, G.L.: Fusing depth and colour information for human action recognition. Multimed. Tools Appl. 78(5), 5919–5939 (2018). https://doi.org/10.1007/s11042-018-6875-7
Muchtar, K., Rahman, F., Munggaran, M.R., Dwiyantoro, A.P.J., Dharmadi, R., Nugraha, I.: A unified smart surveillance system incorporating adaptive foreground extraction and deep learning-based classification. In: Proceedings of the International Conference on Artificial Intelligence in Information and Communication (ICAIIC), pp. 302–305 (2019)
Yu, T.T., Win, Z.M.: Enhanced object representation on moving objects classification. In: International Conference on Advanced Information Technologies (ICAIT), Yangon, Myanmar, pp. 177–182 (2019)
Honnit, B., Soulami, K.B., Saidi, M.N., Tamtaoui, A.: Moving objects multi-classification based on information fusion. J. King Saud Univ. Comput. Inf. Sci. (2020)
Ray, K.S., Chakraborty, A., Dutta, S.: Detection, recognition and tracking of moving objects from real-time video via visual vocabulary model and species inspired PSO. arXiv preprint arXiv:1707.05224 (2017)
Mishra, P.K., Saroha, G.P.: Multiple moving object detection and classification using block based feature extraction algorithm and K-NN Classifier. Int. J. Tomogr. Simul. 32(2) (2019)
Shima, R., et al.: Object classification with deep convolutional neural network using spatial information. In: International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Okinawa, Japan, pp. 135–139 (2017)
Barat, C., Ducottet, C.: String representations and distances in deep convolutional neural networks for image classification. Pattern Recognit. 54, 104–115 (2016)
Davis, J., Sharma, V.: Background-subtraction using contour-based fusion of thermal and visible imagery. Comput. Vis. Image Underst. 106(2–3), 162–182 (2007)
St-Laurent, L., Maldague, X., Prevost, D.: Combination of colour and thermal sensors for enhanced object detection. In: 10th International Conference on Information Fusion, Quebec, Canada, pp. 1–8 (2007)
Goyette, N., Jodoin, P.-M., Porikli, F., Konrad, J., Ishwar, P.: Changedetection.net: a new change detection benchmark dataset. In: IEEE Workshop on Change Detection (CDW-2012) at CVPR-2012, Providence, RI, pp. 16–21 (2012)
Chaabane, I., Guermazi, R., Hammami, M.: Impact of sampling on learning asymmetric-entropy decision trees from imbalanced data. In: 23rd Pacific Asia Conference on Information Systems, China (2019)
Chaabane, I., Guermazi, R., Hammami, M.: Adapted pruning scheme for the framework of imbalanced data-sets. Procedia Comput. Sci. 112, pp. 1542–1553 (2017). ISSN 1877-0509
Li, Z., Huang, M., Liu, G., Jiang, C.: A hybrid method with dynamic weighted entropy for handling the problem of class imbalance with overlap in credit card fraud detection. Expert Syst. Appl. 175, 114750 (2021)
Zhang, L., Zhang, C., Quan, S., Xiao, H., Kuang, G., Liu, L.: A class imbalance loss for imbalanced object recognition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 2778–2792 (2020)
Elasal, N., Swart, D., Miller, N.: Frame augmentation for imbalanced object detection datasets. J. Comput. Vis. Imaging Syst. 4(1) (2018)
Zhongyuan, W., Sang, J., Zhang, Q., Xiang, H., Cai, B., Xia, X.: Multi-scale vehicle detection for foreground-background class imbalance with improved YOLOv2. Sensors 19(15), 3336 (2019)
Lin, T., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In. IEEE International Conference on Computer Vision (ICCV), Venice, Italy, pp. 2980–2988 (2017)
Guermazi, R., Chaabane, I., Hammami, M.: AECID: asymmetric entropy for classifying imbalanced data. Inf. Sci. 467, 373–397 (2018)
Johnson, J.M., Khoshgoftaar, T.M.: Survey on deep learning with class imbalance. J. Big Data 6, 1–54 (2019)
Boukhriss, R.R., Fendri, E., Hammami, M.: Moving object detection under different weather conditions using full-spectrum light sources. Pattern Recognit. Lett. 129, 205–212 (2020)
Jarraya, S.K., Boukhriss, R.R., Hammami, M., Ben-Abdallah, H.: Cast shadow detection based on semi-supervised learning. In: Campilho, A., Kamel, M. (eds.) ICIAR 2012. LNCS, vol. 7324, pp. 19–26. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31295-3_3
Boukhriss, R.R., Fendri, E., Hammami, M.: Moving object classification in infrared and visible spectra. In: Proceedings of the SPIE 10341, Ninth International Conference on Machine Vision, p. 1034104 (2016)
Joseph, R., Ali, F.: YOLOv3: an incremental improvement. arxiv:1804.02767Comment, Tech Report (2018)
Zhou, Z.-H.: Ensemble Methods: Foundations and Algorithms, 1st. edn. Chapman and Hall/CRC (2012)
Chaabane, I., Guermazi, R., Hammami, M.: Enhancing techniques for learning decision trees from imbalanced data. Adv. Data Anal. Classif. 14(3), 677–745 (2019). https://doi.org/10.1007/s11634-019-00354-x
Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
Patel, R.K., Giri, V.K.: Feature selection and classification of mechanical fault of an induction motor using random forest classifier. Perspect. Sci. 8, 334–337 (2016)
Shukla, G., Dev Garg, R., Srivastava, H.S., Garg, P.K.: An effective implementation and assessment of a random forest classifier as a soil spatial predictive model. Int. J. Remote Sens. 39(8), 2637–2669 (2018)
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, pp. 770–778 (2016)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Image net classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 1097–1105 (2012)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv, pp. 1409–1556 (2014)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Boukhriss, R.R., Chaabane, I., Guermazi, R., Fendri, E., Hammami, M. (2022). Imbalanced Learning for Robust Moving Object Classification in Video Surveillance Applications. In: Abraham, A., Gandhi, N., Hanne, T., Hong, TP., Nogueira Rios, T., Ding, W. (eds) Intelligent Systems Design and Applications. ISDA 2021. Lecture Notes in Networks and Systems, vol 418. Springer, Cham. https://doi.org/10.1007/978-3-030-96308-8_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-96308-8_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-96307-1
Online ISBN: 978-3-030-96308-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)