Abstract
Astronomical surveys continue to provide unprecedented insights into the time-variable Universe and will remain the source of groundbreaking discoveries for years to come. However, their data throughput has overwhelmed the ability to manually synthesize alerts for devising and coordinating necessary follow-up with limited resources. The advent of Rubin Observatory, with alert volumes an order of magnitude higher at otherwise sparse cadence, presents an urgent need to overhaul existing human-centered protocols in favor of machine-directed infrastructure for conducting science inference and optimally planning expensive follow-up observations.
We present the first implementation of autonomous real-time science-driven follow-up using value iteration to perform sequential experiment design. We demonstrate it for strategizing photometric augmentation of Zwicky Transient Facility Type Ia supernova light-curves given the goal of minimizing SALT2 parameter uncertainties. We find a median improvement of 2–6% for SALT2 parameters and 3–11% for photometric redshift with 2–7 additional data points in g, r and/or i compared to random augmentation. The augmentations are automatically strategized to complete gaps and for resolving phases with high constraining power (e.g. around peaks). We suggest that such a technique can deliver higher impact during the era of Rubin Observatory for precision cosmology at high redshift and can serve as the foundation for the development of general-purpose resource allocation systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
Object Recommender for Augmentation and Coordinating Liaison Engine.
- 5.
Bin edges at 12, 15.5, 17.5, 19.5, and 21.5 mag.
- 6.
Gaussian kernel with bandwidth of 0.005.
References
Abbott, B.P., et al.: A gravitational-wave standard siren measurement of the Hubble constant. Nature 551(7678), 85–88 (2017). https://doi.org/10.1038/nature24471
Ackley, K., et al.: Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv. A&A 643, A113 (2020). https://doi.org/10.1051/0004-6361/202037669
Anand, S., et al.: Optical follow-up of the neutron star-black hole mergers S200105ae and S200115j. Nat. Astron. 5, 46–53 (2021). https://doi.org/10.1038/s41550-020-1183-3
Arcavi, I.: Rapidly rising transients in the supernova—superluminous supernova gap. ApJ 819(1), 35 (2016). https://doi.org/10.3847/0004-637X/819/1/35
Astudillo, J., Protopapas, P., Pichara, K., Huijse, P.: An information theory approach on deciding spectroscopic follow-ups. AJ 159(1), 16 (2020). https://doi.org/10.3847/1538-3881/ab557d
Baldeschi, A., Miller, A., Stroh, M., Margutti, R., Coppejans, D.L.: Star formation and morphological properties of galaxies in the pan-STARRS 3\(\pi \) survey. I. A machine-learning approach to galaxy and supernova classification. ApJ 902(1), 60 (2020). https://doi.org/10.3847/1538-4357/abb1c0
Bellm, E.C., et al.: The zwicky transient facility: system overview, performance, and first results. PASP 131(995), 018002 (2019). https://doi.org/10.1088/1538-3873/aaecbe
Betoule, M., et al.: Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples. A&A 568, A22 (2014). https://doi.org/10.1051/0004-6361/201423413
Boone, K.: Avocado: photometric classification of astronomical transients with Gaussian process augmentation. AJ 158(6), 257 (2019). https://doi.org/10.3847/1538-3881/ab5182
Brout, D., et al.: First cosmology results using Type Ia supernovae from the Dark Energy Survey: photometric pipeline and light-curve data release. ApJ 874, 106 (2019). https://doi.org/10.3847/1538-4357/ab06c1
Burns, C.R., et al.: The Carnegie supernova project: absolute calibration and the Hubble constant. ApJ 869(1), 56 (2018). https://doi.org/10.3847/1538-4357/aae51c
Carbone, D., Corsi, A.: An optimized radio follow-up strategy for stripped-envelope core-collapse supernovae. ApJ 889(1), 36 (2020). https://doi.org/10.3847/1538-4357/ab6227
Cardelli, J.A., Clayton, G.C., Mathis, J.S.: The relationship between infrared, optical, and ultraviolet extinction. ApJ 345, 245 (1989). https://doi.org/10.1086/167900
Carrasco-Davis, R., et al.: Alert classification for the ALeRCE broker system: the real-time stamp classifier. arXiv e-prints arXiv:2008.03309, August 2020
Coughlin, M.W., Dietrich, T.: Can a black hole-neutron star merger explain GW170817, AT2017gfo, and GRB170817A? Phys. Rev. D 100(4), 043011 (2019). https://doi.org/10.1103/PhysRevD.100.043011
Coughlin, M.W., Dietrich, T., Margalit, B., Metzger, B.D.: Multimessenger Bayesian parameter inference of a binary neutron star merger. MNRAS 489(1), L91–L96 (2019). https://doi.org/10.1093/mnrasl/slz133
Coughlin, M.W., et al.: GROWTH on S190425z: searching thousands of square degrees to identify an optical or infrared counterpart to a binary neutron star merger with the zwicky transient facility and palomar gattini-IR. ApJ 885(1), L19 (2019). https://doi.org/10.3847/2041-8213/ab4ad8
Cranmer, M., Melchior, P., Nord, B.: Unsupervised resource allocation with graph neural networks. arXiv e-prints arXiv:2106.09761, June 2021
Dietrich, T., et al.: Multimessenger constraints on the neutron-star equation of state and the Hubble constant. Science 370(6523), 1450–1453 (2020). https://doi.org/10.1126/science.abb4317
Djorgovski, S.G., et al.: Real-time data mining of massive data streams from synoptic sky surveys. arXiv e-prints arXiv:1601.04385, January 2016
Folatelli, G., et al.: The Carnegie supernova project: analysis of the first sample of low-redshift type-Ia supernovae. AJ 139(1), 120–144 (2010). https://doi.org/10.1088/0004-6256/139/1/120
Förster, F., et al.: The automatic learning for the rapid classification of events (ALeRCE) alert broker. AJ 161(5), 242 (2021). https://doi.org/10.3847/1538-3881/abe9bc
Fremling, C., et al.: The zwicky transient facility bright transient survey. I. Spectroscopic classification and the redshift completeness of local galaxy catalogs. ApJ 895(1), 32 (2020). https://doi.org/10.3847/1538-4357/ab8943
Graham, M.J., et al.: The zwicky transient facility: science objectives. PASP 131(1001), 078001 (2019). https://doi.org/10.1088/1538-3873/ab006c
Graur, O., et al.: LOSS revisited. II. The relative rates of different types of supernovae vary between low- and high-mass galaxies. ApJ 837, 121 (2017). https://doi.org/10.3847/1538-4357/aa5eb7
Guy, J., et al.: SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators. A&A 466(1), 11–21 (2007). https://doi.org/10.1051/0004-6361:20066930
Hinderer, T., et al.: Distinguishing the nature of comparable-mass neutron star binary systems with multimessenger observations: GW170817 case study. Phys. Rev. D 100(6), 063021 (2019). https://doi.org/10.1103/PhysRevD.100.063021
Hotokezaka, K., et al.: A Hubble constant measurement from superluminal motion of the jet in GW170817. Nat. Astron. 3, 940–944 (2019). https://doi.org/10.1038/s41550-019-0820-1
Huerta, E.A., et al.: Enabling real-time multi-messenger astrophysics discoveries with deep learning. Nat. Rev. Phys. 1(10), 600–608 (2019). https://doi.org/10.1038/s42254-019-0097-4
Huth, S., et al.: Constraining neutron-star matter with microscopic and macroscopic collisions. arXiv e-prints arXiv:2107.06229, July 2021
Ivezić, Ž, et al.: LSST: from science drivers to reference design and anticipated data products. ApJ 873(2), 111 (2019). https://doi.org/10.3847/1538-4357/ab042c
Kasliwal, M.M., et al.: The GROWTH marshal: a dynamic science portal for time-domain astronomy. PASP 131(997), 038003 (2019). https://doi.org/10.1088/1538-3873/aafbc2
Kennamer, N., et al.: Active learning with RESSPECT: resource allocation for extragalactic astronomical transients. arXiv e-prints arXiv:2010.05941, October 2020
Kim, A.G., et al.: Type Ia supernova Hubble residuals and host-galaxy properties. ApJ 784(1), 51 (2014). https://doi.org/10.1088/0004-637X/784/1/51
Lochner, M., Bassett, B.A.: ASTRONOMALY: personalised active anomaly detection in astronomical data. Astron. Comput. 36, 100481 (2021). https://doi.org/10.1016/j.ascom.2021.100481
Lunnan, R., et al.: Two new calcium-rich gap transients in group and cluster environments. ApJ 836(1), 60 (2017). https://doi.org/10.3847/1538-4357/836/1/60
Malanchev, K.L., et al.: Anomaly detection in the Zwicky Transient Facility DR3. MNRAS 502(4), 5147–5175 (2021). https://doi.org/10.1093/mnras/stab316
Margutti, R., et al.: An embedded X-ray source shines through the aspherical AT 2018cow: revealing the inner workings of the most luminous fast-evolving optical transients. ApJ 872(1), 18 (2019). https://doi.org/10.3847/1538-4357/aafa01
Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015). https://doi.org/10.1038/nature14236
Möller, A., de Boissière, T.: SuperNNova: an open-source framework for Bayesian, neural network-based supernova classification. MNRAS 491(3), 4277–4293 (2020). https://doi.org/10.1093/mnras/stz3312
Möller, A., et al.: FINK, a new generation of broker for the LSST community. MNRAS 501(3), 3272–3288 (2021). https://doi.org/10.1093/mnras/staa3602
Muthukrishna, D., Mandel, K.S., Lochner, M., Webb, S., Narayan, G.: Real-time detection of anomalies in large-scale transient surveys. arXiv e-prints arXiv:2111.00036, October 2021
Muthukrishna, D., Narayan, G., Mandel, K.S., Biswas, R., Hložek, R.: RAPID: early classification of explosive transients using deep learning. PASP 131(1005), 118002 (2019). https://doi.org/10.1088/1538-3873/ab1609
Narayan, G., et al.: Machine-learning-based brokers for real-time classification of the LSST alert stream. ApJS 236(1), 9 (2018). https://doi.org/10.3847/1538-4365/aab781
Nordin, J., et al.: Transient processing and analysis using AMPEL: alert management, photometry, and evaluation of light curves. A&A 631, A147 (2019). https://doi.org/10.1051/0004-6361/201935634
Perley, D.A., et al.: The zwicky transient facility bright transient survey. II. A public statistical sample for exploring supernova demographics. ApJ 904(1), 35 (2020). https://doi.org/10.3847/1538-4357/abbd98
Phillips, M.M.: The absolute magnitudes of Type IA supernovae. ApJ 413, L105 (1993). https://doi.org/10.1086/186970
Raaijmakers, G., et al.: The challenges ahead for multimessenger analyses of gravitational waves and kilonova: a case study on GW190425. arXiv e-prints arXiv:2102.11569, February 2021
Richards, J.W., et al.: Active learning to overcome sample selection bias: application to photometric variable star classification. ApJ 744(2), 192 (2012). https://doi.org/10.1088/0004-637X/744/2/192
Rigault, M., et al.: Evidence of environmental dependencies of type Ia supernovae from the nearby supernova factory indicated by local H\(\alpha \). A&A 560, A66 (2013). https://doi.org/10.1051/0004-6361/201322104
Rigault, M., et al.: Fully automated integral field spectrograph pipeline for the SEDMachine: pysedm. A&A 627, A115 (2019). https://doi.org/10.1051/0004-6361/201935344
Saha, A., et al.: ANTARES: a prototype transient broker system. In: Observatory Operations: Strategies, Processes, and Systems V. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9149, p. 914908, July 2014. https://doi.org/10.1117/12.2056988
Sánchez-Sáez, P., et al.: Alert classification for the ALeRCE broker system: the light curve classifier. AJ 161(3), 141 (2021). https://doi.org/10.3847/1538-3881/abd5c1
Schlegel, D.J., Finkbeiner, D.P., Davis, M.: Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. ApJ 500(2), 525–553 (1998). https://doi.org/10.1086/305772
Smith, K.W., et al.: Lasair: the transient alert broker for LSST: UK. Res. Notes Am. Astron. Soc. 3(1), 26 (2019). https://doi.org/10.3847/2515-5172/ab020f
Sravan, N., Milisavljevic, D., Reynolds, J.M., Lentner, G., Linvill, M.: Real-time, value-driven data augmentation in the era of LSST. ApJ 893(2), 127 (2020). https://doi.org/10.3847/1538-4357/ab8128
Street, R.A., Bowman, M., Saunders, E.S., Boroson, T.: General-purpose software for managing astronomical observing programs in the LSST era. In: Software and Cyberinfrastructure for Astronomy V. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10707, p. 1070711, July 2018. https://doi.org/10.1117/12.2312293
Villar, V.A., et al.: A deep-learning approach for live anomaly detection of extragalactic transients. ApJS 255(2), 24 (2021). https://doi.org/10.3847/1538-4365/ac0893
Williamson, M., Modjaz, M., Bianco, F.B.: Optimal classification and outlier detection for stripped-envelope core-collapse supernovae. ApJ 880(2), L22 (2019). https://doi.org/10.3847/2041-8213/ab2edb
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Sravan, N., Graham, M.J., Fremling, C., Coughlin, M.W. (2022). Autonomous Real-Time Science-Driven Follow-up of Survey Transients. In: Sachdeva, S., Watanobe, Y., Bhalla, S. (eds) Big-Data-Analytics in Astronomy, Science, and Engineering. BDA 2021. Lecture Notes in Computer Science(), vol 13167. Springer, Cham. https://doi.org/10.1007/978-3-030-96600-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-96600-3_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-96599-0
Online ISBN: 978-3-030-96600-3
eBook Packages: Computer ScienceComputer Science (R0)