Skip to main content

In-silico Investigation of Human Visual System

  • Conference paper
  • First Online:
Contemporary Methods in Bioinformatics and Biomedicine and Their Applications (BioInfoMed 2020)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 374))

Included in the following conference series:

  • 414 Accesses

Abstract

The paper presents in-silico investigations of the effects of brain lesions in different parts of human visual system. For this aim, a hierarchical spike timing neural network model reproducing performance of visual tasks with reinforcement learning by humans was implemented in NEST simulator. Its structure and connectivity is designed according to available information about corresponding brain areas organization. The model has two basic sub-structures: a perceptual part involved in visual information processing and perceptual decision making and basal ganglia that biases taken decisions according to received external reinforcement signal. The developed software includes also an option to introduce “damage” in each one of the model sub-structures thus allowing performance of in-silico investigations of effect of brain lesions. The simulations were performed feeding the model with a dynamic visual stimulus consisting of moving dots. Different scenarios including damage in single or several brain areas were prepared and model reactions were collected. Observed deterioration of visual task performance were summarized and commented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barto, A.G.: Adaptive critics and the basal ganglia. In: Houk, J.C., Davis, J.L., Beiser, D.G. (eds.) Models of Information Processing in the Basal Ganglia, pp. 215–232. MIT Press, Cambridge (1995)

    Google Scholar 

  2. Casti, A., Hayot, F., Xiao, Y., Kaplan, E.: A simple model of retina-LGN transmission. J. Comput. Neurosci. 24, 235–252 (2008)

    Article  Google Scholar 

  3. Clopath, et al.: Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nat. Neurosci. 13(3), 344–352 (2010)

    Google Scholar 

  4. Escobar, M.-J., Masson, G.S., Vieville, T., Kornprobst, P.: Action recognition using a bio-inspired feedforward spiking network. Int. J. Comput. Vis. 82, 284–301 (2009)

    Google Scholar 

  5. Fan, X., Markram, H.: A brief history of simulation neuroscience. Front. Neuroinform. 13 (2019). https://doi.org/10.3389/fninf.2019.00032

  6. Frank, M.J., Seeberger, L.C., O’Reilly, R.C.: By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science 306, 5703, 1940–1943 (2004). https://doi.org/10.1126/science.1102941

  7. Ghodratia, M., Khaligh-Razavic, S.-M., Lehky, S.R.: Towards building a more complex view of the lateral geniculate nucleus: recent advances in understanding its role. Prog. Neurobiol. 156, 214–255 (2017)

    Article  Google Scholar 

  8. Gleeson, P., Martinez, R., Davison, A.: Network models of V1 (2016). http://www.opensourcebrain.org/projects/111

  9. Igarashi, J., Shounob, O., Fukai, T., Tsujino, H.: Real-time simulation of a spiking neural network model of the basal ganglia circuitry using general purpose computing on graphics processing units. Neural Netw. 24, 950–960 (2011)

    Article  Google Scholar 

  10. Joel, D., Niv, Y., Ruppin, E.: Actor-critic models of the basal ganglia: new anatomical and computational perspectives. Neural Netw. 15, 535–547 (2002)

    Article  Google Scholar 

  11. Koprinkova-Hristova, P., Bocheva, N., Nedelcheva, S.: Investigation of feedback connections effect of a spike timing neural network model of early visual system. In: Innovations in Intelligent Systems and Applications (INISTA), Thessaloniki, Greece, 3–5 July 2018 (2018). https://doi.org/10.1109/INISTA.2018.8466292

  12. Koprinkova-Hristova, P., Bocheva, N., Nedelcheva, S., Stefanova, M.: A model of self-motion perception developed in NEST. Front. Comput. Neurosci. (2019). https://doi.org/10.3389/fncom.2019.00020

  13. Koprinkova-Hristova, P., et al.: STDP plasticity in TRN within hierarchical spike timing model of visual information processing. In: Maglogiannis, I., Iliadis, L., Pimenidis, E. (eds.) AIAI 2020. IAICT, vol. 583, pp. 279–290. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49161-1_24

    Chapter  Google Scholar 

  14. Koprinkova-Hristova, P., Bocheva, N.: Brain-inspired spike timing model of dynamic visual information perception and decision making with STDP and reinforcement learning. In: Nicosia, G., et al. (eds.) LOD 2020. LNCS, vol. 12566, pp. 421–435. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64580-9_35

    Chapter  Google Scholar 

  15. Koprinkova-Hristova, P., Bocheva, N.: Spike timing neural model of eye movement motor response with reinforcement learning. In: Georgiev, I., Kostadinov, H., Lilkova, E. (eds.) BGSIAM 2018. SCI, vol. 961, pp. 139–153. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71616-5_14

    Chapter  Google Scholar 

  16. Kremkow, J., et al.: Push-pull receptive field organization and synaptic depression: mechanisms for reliably encoding naturalistic stimuli in V1. Front. Neural Circ. (2016). https://doi.org/10.3389/fncir.2016.00037

    Article  Google Scholar 

  17. Krishnan, R., Ratnadurai, S., Subramanian, D., Chakravarthy, V.S., Rengaswamyd, M.: Modeling the role of basal ganglia in saccade generation: is the indirect pathway the explorer? Neural Netw. 24, 801–813 (2011)

    Article  Google Scholar 

  18. Kunkel, S., et al.: NEST 2.12.0. Zenodo (2017). https://doi.org/10.5281/zenodo.259534

  19. Layton, O.W., Fajen, B.R.: Possible role for recurrent interactions between expansion and contraction cells in MSTd during self-motion perception in dynamic environments. J. Vis. 17(5), 1–21 (2017)

    Article  Google Scholar 

  20. Nedelcheva, S., Koprinkova-Hristova, P.: Orientation selectivity tuning of a spike timing neural network model of the first layer of the human visual cortex. In: Georgiev, K., Todorov, M., Georgiev, I. (eds.) BGSIAM 2017. SCI, vol. 793, pp. 291–303. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-97277-0_24

    Chapter  Google Scholar 

  21. Nedelcheva, S., Georgieva, K., Koprinkova-Hristova, P.: Parallel implementation of the model of retina ganglion cells layer. In: 2020 International Conference on Innovations in Intelligent Systems and Applications (INISTA), Novi Sad, Serbia, pp. 1–6 (2020). https://doi.org/10.1109/INISTA49547.2020.9194616

  22. Plotkin, J.L., Goldberg, L.A.: Thinking Outside the Box (and Arrow): Current Themes in Striatal Dysfunction in Movement Disorders, The Neuroscientist (2018). https://doi.org/10.1177/1073858418807887

  23. Potjans, W., Morrison, A., Diesmann, M.: Enabling functional neural circuit simulations with distributed computing of neuromodulated plasticity. Front. Comput. Neurosci. 4 (2010). https://doi.org/10.3389/fncom.2010.00141many

  24. Rubin, J., Lee, D.D., Sompolinsky, H.: Equilibrium properties of temporally asymmetric Hebbian plasticity. Phys. Rev. Lett. 86(2), 364–367 (2001)

    Article  Google Scholar 

  25. Sadeh, S., Rotter, S.: Statistics and geometry of orientation selectivity in primary visual cortex. Biol. Cybern. 108(5), 631–653 (2013). https://doi.org/10.1007/s00422-013-0576-0

    Article  MATH  Google Scholar 

  26. Troyer, T.W., Krukowski, A.E., Priebe, N.J., Miller, K.D.: Contrast invariant orientation tuning in cat visual cortex: thalamocortical input tuning and correlation-based intracortical connectivity. J. Neurosci. 18, 5908–5927 (1998)

    Article  Google Scholar 

  27. Tsodyks, M., Uziel, A., Markram, H.: Synchrony generation in recurrent networks with frequency-dependent synapses. J. Neurosci. 20RC50, 1–5 (2000)

    Google Scholar 

  28. Van Dijck, G., Van Hulle, M.M., Heiney, S.A., Blazquez, P.M., Meng, H., et al.: Probabilistic identification of cerebellar cortical neurones across species. Plos One 8(3), e57669 (2013). https://doi.org/10.1371journal.pone.0057669

  29. Wei, W., Rubin, J.E., Wang, X.-J.: Role of the indirect pathway of the basal ganglia in perceptual decision making. J. Neurosci. 35(9), 4052–4064 (2015)

    Article  Google Scholar 

  30. Yan, H., Wang, J.: Quantification of motor network dynamics in Parkinson’s disease by means of landscape and flux theory. PLoS One 12(3), e0174364 (2017)

    Google Scholar 

Download references

Acknowledgements

The present research has been supported by the Bulgarian National Science Fund under Grant Ref. No. DN02/3/2016 “Modelling of voluntary saccadic eye movements during decision making”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petia Koprinkova-Hristova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Koprinkova-Hristova, P., Nedelcheva, S., Bocheva, N. (2022). In-silico Investigation of Human Visual System. In: Sotirov, S.S., Pencheva, T., Kacprzyk, J., Atanassov, K.T., Sotirova, E., Staneva, G. (eds) Contemporary Methods in Bioinformatics and Biomedicine and Their Applications. BioInfoMed 2020. Lecture Notes in Networks and Systems, vol 374. Springer, Cham. https://doi.org/10.1007/978-3-030-96638-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96638-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96637-9

  • Online ISBN: 978-3-030-96638-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics