Skip to main content

Bayesian Hierarchical Modelling for Antimicrobial Resistance

  • Conference paper
  • First Online:
Contemporary Methods in Bioinformatics and Biomedicine and Their Applications (BioInfoMed 2020)

Abstract

Antimicrobial resistance poses a serious health problem. Computational and statistical approaches have been developed for bacterial antimicrobial resistance discovery and classification. Next generation sequencing technologies allows us to analyze complex metagenomes and the presence of resistomes in them. In this work we apply Bayesian hierarchical spatial model to estimate the relative risk of antimicrobial resistance related taxa by using the available spatial information of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thomas, C., Nielsen, K.: Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat. Rev. Microbiol. 3, 711–721 (2005)

    Article  Google Scholar 

  2. Bennani, H., Mateus, A., Mays, N., Eastmure, E., Stärk, K.D.C., Häsler, B.: Overview of evidence of antimicrobial use and antimicrobial resistance in the food chain. Antibiotics (Basel) 9(2), 49 (2020)

    Article  Google Scholar 

  3. Okeke, I.N., Edelman, R.: Dissemination of antibiotic-resistant bacteria across geographic 444 borders. Clin. Infect. Dis. 33, 364–369 (2001). https://doi.org/10.1086/321877

    Article  Google Scholar 

  4. Lal Gupta, C., Kumar Tiwari, R., Cytryn, E.: Platforms for elucidating antibiotic resistance in single genomes and complex metagenomes. Environ. Int. 138, 105667 (2020)

    Article  Google Scholar 

  5. Van Camp, P.J., Haslam, D.B., Porollo, A.: Bioinformatics approaches to the understanding of molecular mechanisms in antimicrobial resistance. Int. J. Mol. Sci. 21(4), 1363 (2020)

    Article  Google Scholar 

  6. Hüls, A., Frömke, C., Ickstadt, K., et al.: Antibiotic resistances in livestock: a comparative approach to identify an appropriate regression model for count data. Front Vet Sci. 4, 71 (2017)

    Article  Google Scholar 

  7. MetaSUB International Consortium: The metagenomics and metadesign of the subways and urban biomes (MetaSUB) international consortium inaugural meeting report. Microbiome 4(1), 24 (2016)

    Article  Google Scholar 

  8. Bolger, A.M., Lohse, M., Usadel, B.: Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30(15), 2114–2120 (2014)

    Article  Google Scholar 

  9. National Database of Antibiotic Resistant Organisms (NDARO). https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/

  10. Menzel, P., et al.: Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257 (2016)

    Article  Google Scholar 

  11. Danko, D., et al.: Global genetic cartography of urban metagenomes and anti-microbial resistance. bioRxiv, accepted in Science (2019)

    Google Scholar 

  12. Feargal, J.R.: Application of machine learning techniques for creating urban microbial fingerprints. Biol. Direct 14(1), 13 (2019)

    Article  Google Scholar 

  13. Lee, D.: CARBayes: an R package for Bayesian spatial modeling with conditional autoregressive priors. J. Stat. Softw. 55(13), 1–24 (2013)

    Article  Google Scholar 

  14. Besag, J., York, J., Mollie, A.: Bayesian image restoration with two applications in spatial statistics. Ann. Inst. Stat. Math. 43, 1–59 (1991)

    Article  MathSciNet  Google Scholar 

  15. Lawson, A.B.: Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, 3rd edn. Chapman and Hall/CRC (2018)

    Google Scholar 

  16. Geweke, J.: Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In: Bernado, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M. (eds.) Bayesian Statistics, vol. 4. Clarendon Press, Oxford (1992)

    MATH  Google Scholar 

  17. Gittleman, J.L., Kot, M.: Adaptation: statistics and a null model for estimating phylogenetic effects. Syst. Zool. 39, 227–241 (1990)

    Article  Google Scholar 

  18. BatchGeo. https://www.batchgeo.com/

  19. Leroux, B., Lei, X., Breslow, N.: Estimation of disease rates in small areas: a new mixed model for spatial dependence. In: Halloran, M., Berry, D. (eds.) Statistical Models in Epidemiology, the Environment and Clinical Trials, vol. 116, pp. 179–191. Springer, New York (2000). https://doi.org/10.1007/978-1-4612-1284-3_4

    Chapter  MATH  Google Scholar 

  20. Lee, D., Mitchell, R.: Boundary detection in disease mapping studies. Biostatistics 13, 415–426 (2012)

    Article  Google Scholar 

  21. Lee, D., Sarran, C.: Controlling for unmeasured confounding and spatial misalignment in long-term air pollution and health studies. Environmetrics 26, 477–487 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by project BG05M2OP001-1.001-0004 (UNITE) for the coverage of conference fee and the National Scientific Program Information and Communication Technologies for a Single Digital Market in Science, Education and Security (ICTinSES) for logistics. In addition, this work was partially supported by the financial funds allocated to the Sofia University St. Kl. Ohridski, grant No. 80-10-116/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitar Vassilev .

Editor information

Editors and Affiliations

Ethics declarations

The opinions expressed in this work are personal and do not represent in any way Bristol Myers-Squibb. No Bristol Myers-Squibb resources were used to generate results or prepare this paper.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhelyazkova, M. et al. (2022). Bayesian Hierarchical Modelling for Antimicrobial Resistance. In: Sotirov, S.S., Pencheva, T., Kacprzyk, J., Atanassov, K.T., Sotirova, E., Staneva, G. (eds) Contemporary Methods in Bioinformatics and Biomedicine and Their Applications. BioInfoMed 2020. Lecture Notes in Networks and Systems, vol 374. Springer, Cham. https://doi.org/10.1007/978-3-030-96638-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96638-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96637-9

  • Online ISBN: 978-3-030-96638-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics