Skip to main content

Some Problems Related to the Space of Optimal Tree Reconciliations

(Invited Talk)

  • Conference paper
  • First Online:
WALCOM: Algorithms and Computation (WALCOM 2022)

Abstract

Tree reconciliation is a general framework for investigating the evolution of strongly dependent systems as hosts and parasites or genes and species, based on their phylogenetic information. Indeed, informally speaking, it reconciles any differences between two phylogenetic trees by means of biological events. Tree reconciliation is usually computed according to the parsimony principle, that is, to each evolutionary event a cost is assigned and the goal is to find tree reconciliations of minimum total cost. Unfortunately, the number of optimal reconciliations is usually huge and many biological applications require to enumerate and to examine all of them, so it is necessary to handle them.

In this paper we list some problems connected with the management of such a big space of tree reconciliations and, for each of them, discuss some known solutions.

Supported by Sapienza University of Rome, projects “Comparative Analysis of Phylogenies” (no. RM1181642702045E), “A deep study of phylogenetic tree reconciliations” (no. RM11916B462574AD) and “Measuring the similarity of biological and medical structures through graph isomorphism” (no. RM120172A3F313FE).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bansal, M.S., Chang, W.-C., Eulenstein, O., Fernández-Baca, D.: Generalized binary tanglegrams: algorithms and applications. In: Rajasekaran, S. (ed.) BICoB 2009. LNCS, vol. 5462, pp. 114–125. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00727-9_13

    Chapter  Google Scholar 

  2. Berry, V., Chevenet, F., Doyon, J.P., Jousselin, E.: A geography-aware reconciliation method to investigate diversification patterns in host/parasite interactions. Mol. Ecol. Resour. 18(5), 1173–1184 (2018). https://doi.org/10.1111/1755-0998.12897

    Article  Google Scholar 

  3. Böcker, S., Hüffner, F., Truss, A., Wahlström, M.: A faster fixed-parameter approach to drawing binary tanglegrams. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 38–49. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-11269-0_3

    Chapter  Google Scholar 

  4. Brooks, D.R., Ferrao, A.L.: The historical biogeography of co-evolution: emerging infectious diseases are evolutionary accidents waiting to happen. J. Biogeogr. 32, 1291–1299 (2005)

    Article  Google Scholar 

  5. Buchin, K., et al.: Drawing (complete) binary tanglegrams. Algorithmica 62(1–2), 309–332 (2012). https://doi.org/10.1007/s00453-010-9456-3

    Article  MathSciNet  MATH  Google Scholar 

  6. Calamoneri, T., Monti, A., Sinaimeri, B.: Co-divergence and tree topology. J. Math. Biol. 79(3), 1149–1167 (2019). https://doi.org/10.1007/s00285-019-01385-w

    Article  MathSciNet  MATH  Google Scholar 

  7. Calamoneri, T., Tavernelli, D., Vocca, P.: Linear time reconciliation with bounded transfers of genes. IEEE/ACM Trans. Comput. Biol. Bioinform. (2020). https://doi.org/10.1109/TCBB.2020.3027207. https://ieeexplore.ieee.org/document/9207859

  8. Calamoneri, T., Donato, V.D., Mariottini, D., Patrignani, M.: Visualizing co-phylogenetic reconciliations. Theoret. Comput. Sci. 815, 228–245 (2020). https://doi.org/10.1016/j.tcs.2019.12.024

    Article  MathSciNet  MATH  Google Scholar 

  9. Charleston, M.: Jungles: a new solution to the host/parasite phylogeny reconciliation problem. Math. Biosci. 149, 191–223 (1998)

    Article  MathSciNet  Google Scholar 

  10. Chevenet, F., Doyon, J.P., Scornavacca, C., Jacox, E., Jousselin, E., Berry, V.: SylvX: a viewer for phylogenetic tree reconciliations. Bioinformatics 32(4), 608–610 (2016). https://doi.org/10.1093/bioinformatics/btv625

    Article  Google Scholar 

  11. Donati, B., Baudet, C., Sinaimeri, B., Crescenzi, P., Sagot, M.F.: EUCALYPT: efficient tree reconciliation enumerator. Algorithms Mol. Biol. 10(3), 1–11 (2015). https://doi.org/10.1186/s13015-014-0031-3

  12. Gastaldello, M., Calamoneri, T., Sagot, M.-F.: Extracting few representative reconciliations with host switches. In: Bartoletti, M., et al. (eds.) CIBB 2017. LNCS, vol. 10834, pp. 9–18. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14160-8_2

    Chapter  Google Scholar 

  13. Grueter, M., Duran, K., Ramalingam, R., Libeskind-Hadas, R.: Reconciliation reconsidered: in search of a most representative reconciliation in the duplication-transfer-loss model. IEEE/ACM Trans. Comput. Biol. Bioinform. 18(6), 2136–2143 (2019). https://doi.org/10.1109/TCBB.2019.2942015

    Article  Google Scholar 

  14. Haack, J., Zupke, E., Ramirez, A., Wu, Y.C., Libeskind-Hadas, R.: Computing the diameter of the space of maximum parsimony reconciliations in the duplication-transfer-loss model. IEEE/ACM Trans. Comput. Biol. Bioinf. 16(1), 14–22 (2019). https://doi.org/10.1109/TCBB.2018.2849732

    Article  Google Scholar 

  15. Hallett, M.T., Lagergren, J.: Efficient algorithms for lateral gene transfer problems. In: Proceedings of the Fifth Annual International Conference on Computational Biology (RECOMB 2001), pp. 149–156 (2001)

    Google Scholar 

  16. Huber, K.T., Moulton, V., Sagot, M.F., Sinaimeri, B.: Exploring and visualizing spaces of tree reconciliations. Syst. Biol. 68(4), 607–618 (2018). https://doi.org/10.1093/sysbio/syy075

    Article  Google Scholar 

  17. Huber, K.T., Moulton, V., Sagot, M., Sinaimeri, B.: Geometric medians in reconciliation spaces of phylogenetic trees. Inf. Process. Lett. 136, 96–101 (2018). https://doi.org/10.1016/j.ipl.2018.04.001

    Article  MathSciNet  MATH  Google Scholar 

  18. Jacox, E., Chauve, C., Szöllősi, G.J., Ponty, Y., Scornavacca, C.: ecceTERA: comprehensive gene tree-species tree reconciliation using parsimony. Bioinformatics (2016). https://doi.org/10.1093/bioinformatics/btw105

    Article  Google Scholar 

  19. Libeskind-Hadas, R.: Jane 4 - a software tool for the cophylogeny reconstruction problem. https://www.cs.hmc.edu/~hadas/jane/

  20. Merkle, D., Middendorf, M., Wieseke, N.: A parameter-adaptive dynamic programming approach for inferring cophylogenies. BMC Bioinformatics 11(Suppl. 1), 1–10 (2010). https://doi.org/10.1186/1471-2105-11-S1-S60

    Article  Google Scholar 

  21. Bansal, M.S., Alm, E.J., Kellis, M.: Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bioinformatics 28, 283–291 (2012). https://doi.org/10.1093/bioinformatics/bts225

    Article  Google Scholar 

  22. Nguyen, T.H., Ranwez, V., Berry, V., Scornavacca, C.: Support measures to estimate the reliability of evolutionary events predicted by reconciliation methods. PLoS ONE 8(10), 1–14 (2013). https://doi.org/10.1371/journal.pone.0073667

    Article  Google Scholar 

  23. Nöllenburg, M., Völker, M., Wolff, A., Holten, D.: Drawing binary tanglegrams: an experimental evaluation. In: Finocchi, I., Hershberger, J. (eds.) ALENEX 2009, pp. 106–119. SIAM (2009). https://doi.org/10.1137/1.9781611972894.11

  24. Ovadia, Y.J., Fielder, D., Conow, C., Libeskind-Hadas, R.: The cophylogeny reconstruction problem is np-complete. J. Comput. Biol. 18(1), 59–65 (2011). https://doi.org/10.1089/cmb.2009.0240

    Article  MathSciNet  Google Scholar 

  25. Page, R.D.M.: Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Syst. Biol. 43, 58–77 (1994)

    Google Scholar 

  26. Ronquist, F.: Parsimony analysis of coevolving species associations. In: Tangled Trees: Phylogeny, Cospeciation, and Coevolution (2002)

    Google Scholar 

  27. Rosen, D.E.: Vicariant patterns and historical explanation in biogeography. Syst. Biol. 27, 159–188 (1978)

    Google Scholar 

  28. Santichaivekin, S., Mawhorter, R., Libeskind-Hadas, R.: An efficient exact algorithm for computing all pairwise distances between reconciliations in the duplication-transfer-loss model. BMC Bioinformatics 20(20), 636 (2019). https://doi.org/10.1186/s12859-019-3203-9

    Article  Google Scholar 

  29. Santichaivekin, S., et al.: eMPRess: a systematic cophylogeny reconciliation tool. Bioinformatics 37(16), 2481–2482 (2020). https://doi.org/10.1093/bioinformatics/btaa978

    Article  Google Scholar 

  30. Schulz, H.J.: Treevis.net: a tree visualization reference. IEEE Comput. Graphics Appl. 31(6), 11–15 (2011). https://doi.org/10.1109/MCG.2011.103

    Article  Google Scholar 

  31. Scornavacca, C., Zickmann, F., Huson, D.H.: Tanglegrams for rooted phylogenetic trees and networks. Bioinformatics 13(27), i248–i256 (2011). https://doi.org/10.1093/bioinformatics/btr210

    Article  Google Scholar 

  32. Sennblad, B., Schreil, E., Sonnhammer, A.C.B., Lagergren, J., Arvestad, L.: primetv: a viewer for reconciled trees. BMC Bioinformatics 8(1), 148 (2007)

    Article  Google Scholar 

  33. Stolzer, M., Lai, H., Xu, M., Sathaye, D., Vernot, B., Durand, D.: Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees. Bioinformatics 28(18), i409–i415 (2012). https://doi.org/10.1093/bioinformatics/bts386

    Article  Google Scholar 

  34. Tofigh, A., Hallett, M., Lagergren, J.: Simultaneous identification of duplications and lateral gene transfers. IEEE/ACM Trans. Comput. Biol. Bioinf. 8(2), 517–535 (2011). https://doi.org/10.1109/TCBB.2010.14

    Article  Google Scholar 

  35. Tollis, I.G., Kakoulis, K.G.: Algorithms for visualizing phylogenetic networks. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 183–195. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50106-2_15

    Chapter  Google Scholar 

  36. Wang, Y., Mary, A., Sagot, M., Sinaimeri, B.: Capybara: equivalence class enumeration of cophylogeny event-based reconciliations. Bioinformatics 36(14), 4197–4199 (2020). https://doi.org/10.1093/bioinformatics/btaa498

    Article  Google Scholar 

  37. Wang, Y., Mary, A., Sagot, M., Sinaimeri, B.: Making sense of a cophylogeny output: efficient listing of representative reconciliations. In: 21st International Workshop on Algorithms in Bioinformatics, WABI 2021, 2–4 August 2021, Virtual Conference, pp. 3:1–3:18 (2021). https://doi.org/10.4230/LIPIcs.WABI.2021.3

  38. Wieseke, N., Hartmann, T., Bernt, M., Middendorf, M.: Cophylogenetic reconciliation with ILP. IEEE/ACM Trans. Comput. Biol. Bioinform. 12(6), 1227–1235 (2015). https://doi.org/10.1109/TCBB.2015.2430336

    Article  Google Scholar 

  39. Zhao, P., Liu, F., Li, Y.M., Cai, L.: Inferring phylogeny and speciation of Gymnosporangium species, and their coevolution with host plants. Sci. Rep. 6, Article No. 29339 (2016). https://doi.org/10.1038/srep29339

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiziana Calamoneri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Calamoneri, T., Sinaimeri, B. (2022). Some Problems Related to the Space of Optimal Tree Reconciliations. In: Mutzel, P., Rahman, M.S., Slamin (eds) WALCOM: Algorithms and Computation. WALCOM 2022. Lecture Notes in Computer Science(), vol 13174. Springer, Cham. https://doi.org/10.1007/978-3-030-96731-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96731-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96730-7

  • Online ISBN: 978-3-030-96731-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics