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Abstract. The L(p, q)-Edge-Labelling problem is the edge variant
of the well-known L(p, q)-Labelling problem. It is equivalent to the
L(p, q)-Labelling problem itself if we restrict the input of the lat-
ter problem to line graphs. So far, the complexity of L(p, q)-Edge-
Labelling was only partially classified in the literature. We complete
this study for all p, q ≥ 0 by showing that whenever (p, q) 6= (0, 0), the
L(p, q)-Edge-Labelling problem is NP-complete. We do this by prov-
ing that for all p, q ≥ 0 except p = q = 0, there is an integer k so that
L(p, q)-Edge-k-Labelling is NP-complete.

1 Introduction

This paper studies a problem that falls under the distance-constrained labelling
framework. Given any fixed nonnegative integer values p and q, an L(p, q)-k-
labelling is an assignment of labels from {0, . . . , k− 1} to the vertices of a graph
such that adjacent vertices receive labels that differ by at least p, and vertices
connected by a path of length 2 receive labels that differ by at least q [5]. Some
authors instead define the latter condition as being vertices at distance 2 receive
labels which differ by at least q (e.g. [7]). These definitions are the same so long
as p ≥ q and much of the literature considers only this case (e.g. [11]). If q > p,
the definitions diverge. For example, in an L(1, 2)-labelling, the vertices of a
triangle K3 need labels {0, 1, 2} in the second definition but {0, 2, 4} in the first.
We use the first definition, in line with [5]. The decision problem of testing if
for a given integer k, a given graph G admits an L(p, q)-k-labelling is known as
L(p, q)-Labelling. If k is fixed, that is, not part of the input, we denote the
problem as L(p, q)-k-Labelling.

The L(p, q)-labelling problem has been heavily studied, both from the com-
binatorial and computational complexity perspectives. For a starting point, we
refer the reader to the comprehensive survey of Calamoneri [5].3 The L(1, 0)-
Labelling is the traditional Graph Colouring problem (COL), whereas
L(1, 1)-Labelling is known as (Proper) Injective Colouring [3, 2, 9] and
Distance 2 Colouring [13, 16]. The latter problem is studied explicitly in
many papers (see [5]), just as is L(2, 1)-Labelling [8, 11, 12] (see also [5]). The
L(p, q)-labelling problem is also studied for special graph classes, see in par-
ticular [6] for a complexity dichotomy for trees. Janczewski et al. [11] proved that
if p > q, then L(p, q)-Labelling is NP-complete for planar bipartite graphs.

3 See http://wwwusers.di.uniroma1.it/~calamo/survey.html for later results.



2 Gaétan Berthe et al.

Regime Reduction from Place in article k at least

p = 0 and q > 0 3-COL Section 3 3q
2 ≤ q/p NAE-3-SAT Appendix A (n− 1)p + q + 1
1 < q/p ≤ 2 NAE-3-SAT Section 4 5p + 1
q/p = 1 3-COL [14] 4p
2/3 < q/p ≤ 1 3-COL Section 5 3p + q + 1
q/p = 2/3 1-in-3-SAT Appendix B 4p
1/2 < q/p < 2/3 2-in-4-SAT Appendix C p + 4q + 1
0 < q/p ≤ 1/2 NAE-3-SAT Appendix D [12] 3p + 1
p > 0 and q = 0 3-COL Section 2 3p

Table 1. Table of results. The fourth row follows from [14] (which proves the case
p = q = 1) and applying Lemma 1. The eighth row is obtained from a straightforward
generalization of the result in [12] for the case where p = 2 and q = 1. The fourth
column gives the minimal k for which we prove NP-completeness. In the second row
choose minimal n ≥ 4 so that (n− 3)p ≥ q.

We consider the edge version of the problem. The distance between two edges
e1 and e2 is the length of a shortest path that has e1 as its first edge and e2 as its
last edge minus 1 (we say that e1 and e2 are adjacent if they share an end-vertex
or equivalently, are of distance 1 from each other). The L(p, q)-Edge-Labelling
problem considers an assignment of the labels to the edges instead of the vertices,
and now the corresponding distance constraints are placed instead on the edges.
Owing to space constraints some proofs and cases are omitted. Please see the
full version of this article at [1]. In particular, references to the appendix are
intended for that version.

In [12], the complexity of L(2, 1)-Edge-k-Labelling is classified. It is in P
for k < 6 and is NP-complete for k ≥ 6. In [14], the complexity of L(1, 1)-Edge-
k-Labelling is classified. It is in P for k < 4 and is NP-complete for k ≥ 4.
In this paper we complete the classification of the complexity of L(p, q)-Edge-
k-Labelling in the sense that, for all p, q ≥ 0 except p = q = 0, we exhibit k
so we can show L(p, q)-Edge-k-Labelling is NP-complete. That is, we do not
exhibit the border for k where the problem transitions from P to NP-complete
(indeed, we do not even prove the existence of such a border). The authors of
[12] were looking for a more general result, similar to ours, but found the case
(p, q) = (2, 1) laborious enough to fill one paper [15]. In fact, their proof settles
for us all cases where p ≥ 2q. We now give our main result.

Theorem 1. For all p, q ≥ 0 except if p = q = 0, there exists an integer k so
that L(p, q)-Edge-k-Labelling is NP-complete.

The proof follows by case analysis as per Table 1, where the corresponding
section for each of the subresults is specified. We are able to reduce to the case
that gcd(p, q) = 1, due to the forthcoming Lemma 1. We prove NP-hardness
by reduction from graph 3-colouring and several satisfiability variants. These
latter are known to be NP-hard from Schaefer’s classification [17]. Each section
begins with a theorem detailing the relevant NP-completeness. The case p =
q = 0 is trivial (never use more than one colour) and is therefore omitted.
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Our hardness proofs involve gadgets that have certain common features, for
example, the vertex-variable gadgets are generally star-like. For one case, we
have a computer-assisted proof (as we will explain in detail).

By Theorem 1 we obtain a complete classification of L(p, q)-Edge-Labelling.

Corollary 1. For all p, q ≥ 0 except p = q = 0, L(p, q)-Edge-Labelling is
NP-complete.

Note that L(p, q)-Edge-Labelling is equivalent to L(p, q)-Labelling for line
graphs (the line graph of a graph G has vertex set E(G) and two vertices e
and f in it are adjacent if and only if e and f are adjacent edges in G). Hence,
we obtain another dichotomy for L(p, q)-Labelling under input restrictions,
besides the ones for trees [6] and if p > q, (planar) bipartite graphs [11].

Corollary 2. For all p, q ≥ 0 except p = q = 0, L(p, q)-Labelling is NP-
complete for the class of line graphs.

2 Preliminaries

We use the terms colouring and labelling interchangeably. A special role will be
played by the extended n-star (especially for n = 4). This is a graph built from an
n-star K1,n by subdividing each edge (so it becomes a path of length 2). Instead
of referring to the problem as L(p, q)-Labelling (or L(h, k)-Labelling) we
will use L(a, b)-Labelling to free these other letters for alternative uses.

The following lemma is folklore and applies equally to the vertex- or edge-
labelling problem. Note that gcd(0, b) = b.

Lemma 1. Let gcd(a, b) = d > 1. Then the identity is a polynomial time reduc-
tion from L(a/d, b/d)-(Edge)-k-Labelling to L(a, b)-(Edge)-kd-Labelling.

This result and the known NP-completeness of Edge-3-Colouring [10] imply:

Corollary 3. For all a > 0, L(a, 0)-Edge-3a-Labelling is NP-complete.

3 Case a = 0 and b > 0

By Lemma 1 we only have to consider a = 0 and b = 1.

Theorem 2. The problem L(0, 1)-Edge-3-Labelling is NP-complete.

Let us use colours {0, 1, 2}. Our NP-hardness proof involves a reduction from
3-COL but we retain the nomenclature of variable gadget and clause gadget
(instead of vertex gadget and edge gadget) in deference to the majority of our
other sections. Our variable gadget consists of a triangle attached on one of its
vertices to a leaf vertex of a star. Our clause gadget consists of a bull, each
of whose pendant edges (vertices of degree 1) has an additional pendant edge
added (that is, they are subdivided). This is equivalent to a triangle with a path
of length 2 added to each of two of the three vertices. We draw our variable
gadget in Figure 1 and our clause gadget in Figure 2.
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Lemma 2. In any valid L(0, 1)-edge-3-labelling of the variable gadget, each of
the pendant edges must be coloured the same.

Proof. Each of the edges in the triangle must be coloured distinctly as there is
a path of length two from each to any other (by this we mean with a single
edge in between, though they are also adjacent). Suppose the triangle edge that
has two nodes of degree 2 in the variable gadget is coloured i. It is this colour
that must be used for all of the pendant edges. The remaining edge may be
coloured by anything from {0, 1, 2} \ {i}. However, we will always choose the
option i− 1 mod 3. ⊓⊔

• • •

•

2
2

⑦⑦⑦⑦⑦⑦⑦
2

❅❅❅❅❅❅❅
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2
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1

❅❅❅❅❅❅❅

Fig. 1. The variable gadget for Theorem 2.
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Fig. 2. The clause gadget for Theorem 2 (left) drawn also together with its interface
with a variable gadget (right). The dashed line is an inner edge of the variable gadget.

Lemma 3. In any valid L(0, 1)-edge-3-labelling of the clause gadget, the two
pendant edges must be coloured distinctly.

Proof. Each of the edges in the triangle must be coloured distinctly as there is
a path of length two from each to any other. Suppose the triangle edge that has
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two nodes of degree 3 in the clause gadget is coloured (w.l.o.g.) 2. The remaining
edges in the triangle must be given 0 and 1, in some order. This then determines
the colours of the remaining edges and enforces that the two pendant edges
must be coloured distinctly. However, suppose we had started first by colouring
distinctly the pendant edges. We could then choose a colouring of the remaining
edges of the clause gadget so as to enforce the property that, if a pendant edge
is coloured i, then its neighbour (in the clause gadget) is coloured i + 1 mod 3.
This is the colouring we will always choose. ⊓⊔

We are now ready to prove Theorem 2.

Proof (Proof of Theorem 2.). We reduce from 3-COL. Let G be an instance of
3-COL involving n vertices and m edges. Let us explain how to build an instance
G′ for L(0, 1)-Edge-3-Labelling. Each particular vertex may only appear in
at most m edges (its degree), so for each vertex we take a copy of the variable
gadget which has m pendant edges. For each edge of G we use a clause gadget
to unite an instance of these pendant edges from the corresponding two variable
gadgets. We use each pendant edge from a variable gadget in at most one clause
gadget. We identify the pendant edge of a variable gadget with a pendant edge
from a clause gadget so as to form a path from one to the other. We claim that G
is a yes-instance of 3-COL iff G′ is a yes-instance of L(0, 1)-Edge-3-Labelling.

(Forwards.) Take a proper 3-colouring of G and induce these colours on
the pendant edges of the corresponding variable gadgets. Distinct colours on
pendant edges can be consistently united in a clause gadget since we choose, for
a pendant edge coloured i: i− 1 mod 3 for its neighbour in the variable gadget,
and i + 1 mod 3 for its neighbour in the clause gadget.

(Backwards.) From a valid L(0, 1)-edge-3-labelling ofG′, we infer a 3-colouring
of G by reading the pendant edge labels from the variable gadget of the corre-
sponding vertex. The consistent labelling of each vertex follows from Lemma 2
and the fact that it is proper follows from Lemma 3. ⊓⊔

4 Case 1 < b

a
≤ 2

In this section we prove the following result.

Theorem 3. If 1 < b
a
≤ 2, the problem L(a, b)-Edge-(5a + 1)-Labelling is

NP-complete.

We proceed by a reduction from (monotone) NAE-3-SAT. This case is relatively
simple as the variable gadget is built from a series of extended 4-stars chained
together, where each has a pendant 5-star to enforce some benign property. We
will use colours from the set {0, . . . , 5a}.

Lemma 4. Let 1 < b
a
≤ 2. In any valid L(a, b)-edge-(5a + 1)-labelling of the

extended 4-star, if one pendant edge is coloured 0 then all pendant edges are
coloured in the interval {0, . . . , a}; and if one pendant edge is coloured 5a then
all pendant edge are coloured in the interval {4a, . . . , 5a}.
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Proof. Suppose some pendant edge is coloured by 0 and another pendant is
coloured by l′ /∈ {0, . . . , a}. There are four inner edges of the star that are at
distance 1 or 2 from these, and one another. If l′ < 2a, then at least 2a labels
are ruled out, which does not leave enough possibilities for the inner edges to
be labelled in (at best) {2a + 1, . . . , 5a}. If l′ ≥ 2a, then it is not possible to
use labels for the inner edges that are all strictly above l′. It is also not possible
to use labels for the inner edges that are all strictly below l. In both cases, at
least 2a labels are ruled out. Thus the labels, read in ascending order, must
start no lower than a and have a jump of 2a at some point. It follows they are
one of: a, 3a, 4a, 5a; or a, 2a, 4a, 5a; or a, 2a, 3a, 5a. This implies that l′ is itself a
multiple of a (whichever one was omitted in the given sequence). But now, since
b > a, there must be a violation of a distance 2 constraint from l′. ⊓⊔

We would like to chain extended 4-stars together to build our variable gadgets,
where the pendant edges represent variables (and enter into clause gadgets) and
we interpret one of the regimes {0, . . . , a} and {4a, . . . , 5a} as true, and the
other as false. However, the extended 4-star can be validly L(a, b)-edge-(5a+1)-
labelled in other ways that we did not yet consider. We can only use Lemma 4
if we can force one pendant edge in each extended 4-star to be either 0 or 5a.
Fortunately, this is straightforward: take a 5-star and add a new edge to one of
the edges of the 5-star creating a path of length 2 from the centre of the star to
the furthest leaf. This new edge can only be coloured 0 or 5a. In Figure 3 we
show how to chain together copies of the extended 4-star, together with pendant
5-star gadgets at the bottom, to produce many copies of exactly one of the
regimes {0, . . . , a} and {4a, . . . , 5a}. Note that the manner in which we attach
the pendant 5-star only produces a valid L(a, b)-edge-(5a+ 1)-labelling because
2a ≥ b (otherwise some distance 2 constraints would fail). So long as precisely
one pendant edge per extended 4-star is used to encode a variable, then each
encoding can realise all labels within each of these regimes, and again this can
be seen by considering the pendant edges drawn top-most in Figure 3, which can
all be coloured anywhere in {4a, . . . , 5a}. Let us recap, a variable gadget (to be
used for a variable that appears in an instance of NAE-3-SAT m times) is built
from chaining together m extended 4-stars, each with a pendant 5-star, exactly
as is depicted in Figure 3 for m = 3. The following is clear from our construction.
The designation top is with reference to the drawing in Figure 3. In Figure 3, the
case drawn corresponds to {4a, . . . , 5a}, where the case {0, . . . , a} is symmetric.

Lemma 5. Any valid L(a, b)-edge-(5a+1)-labelling of a variable gadget is such
that the top pendant edges are all coloured from precisely one of the sets {0, . . . , a}
and {4a, . . . , 5a}. Moreover, any colouring of the top pendant edges from one of
these sets is valid.

The clause gadget will be nothing more than a 3-star (a claw) which is formed
from a new vertex uniting three (top) pendant edges from their respective vari-
able gadgets. The following is clear.

Lemma 6. A clause gadget is in a valid L(a, b)-edge-(5a + 1)-labelling in the
case where two of its edges are coloured 0, a and the third 5a; or two of its edges
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⑦⑦⑦⑦⑦⑦⑦
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Fig. 3. Three extended 4-stars chained together, each with a pendant 5-star below, to
form a variable gadget for Theorem 3. The pendant edges drawn on the top will be
involved in clauses gadget and each of these three edges can be coloured with anything
from {4a, . . . , 5a}. If the top pendant edge is coloured 5a it may be necessary that
the inner star edge below it is coloured not 3a but 2a (cf. Figure 4). This is fine, the
chaining construction works when swapping 2a and 3a.

are coloured 4a, 5a and the third 0. If all three edges come from only one of the
regimes {0, . . . , a} and {4a, . . . , 5a}, it can not be in a valid L(a, b)-edge-(5a+1)-
labelling.

We are now ready to prove Theorem 3.

Proof (Proof of Theorem 3.). We reduce from (monotone) NAE-3-SAT. Let Φ be
an instance of NAE-3-SAT involving n occurrences of (not necessarily distinct)
variables and m clauses. Let us explain how to build an instance G for L(a, b)-
Edge-(5a + 1)-Labelling. Each particular variable may only appear at most
n times, so for each variable we take a copy of the variable gadget which is n
extended 4-stars, each with a pendant 5-star, chained together. Each particular
instance of the variable belongs to one of the free (top) pendant edges of the
variable gadget. For each clause of Φ we use a 3-star to unite an instance of these
free (top) pendant edges from the corresponding variable gadgets. Thus, we add
a single vertex for each clause, but no new edges (they already existed in the
variable gadgets). We claim that Φ is a yes-instance of NAE-3-SAT if and only
if G is a yes-instance of L(a, b)-Edge-(5a+ 1)-Labelling.

(Forwards.) Take a satisfying assignment for Φ. Let the range {0, . . . , a} rep-
resent true and the range {4a, . . . , 5a} represent false. This gives a valid labelling
of the inner edges in the extended 4-stars, as exemplified in Figure 3. In each
clause, either there are two instances of true and one of false; or the converse.
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Let us explain the case where the first two variable instances are true and the
third is false (the general case can easily be garnered from this). Colour the
(top) pendant edge associated with the first variable as 0, the second variable
a and the third variable 5a. Plainly these can be consistently united in a claw
by the new vertex that appeared in the clause gadget. We draw the situation
in Figure 4 to demonstrate that this will not introduce problems at distance 2.
Thus, we can see this is a valid L(a, b)-edge-(5a+ 1)-labelling of G.

(Backwards.) From a valid L(a, b)-edge-(5a+ 1)-labelling of G, we infer an
assignment Φ by reading, in the variable gadget, the range {0, . . . , a} as true
and the range {4a, . . . , 5a} as false. The consistent valuation of each variable
follows from Lemma 5 and the fact that it is in fact not-all-equal follows from
Lemma 6. ⊓⊔

•

0

⑦⑦
⑦⑦
⑦⑦
⑦

a
5a

❅❅
❅❅

❅❅
❅

•

3a

•

2a

•

3a

• • •

•

0

⑦⑦
⑦⑦
⑦⑦
⑦

4a
5a

❅❅
❅❅

❅❅
❅

•

2a

•

3a

•

2a

• • •

Fig. 4. The clause gadget and its interface with the variable gadgets (where we must
consider distance 2 constraints). Both possible evaluations for not-all-equal are de-
picted.

5 Case 2

3
< b

a
< 1

In this section we prove the following result.

Theorem 4. If 2

3
< b

a
< 1, then the problem L(a, b)-Edge-(3a + b + 1)-

Labelling is NP-complete.

The regimes of the following lemma are drawn in Figure 5.

Lemma 7. Let 1 < a
b
< 3

2
. In an L(a, b)-edge-(3a+ b+ 1)-labelling c of the ex-

tended 4-star, there are three regimes for the pendant edges. The first is {b, . . . , a},
the second is {2a+ b, . . . , 3a}, and the third is {a+ b, . . . , 2a}.

Proof. In a valid L(a, b)-edge-(3a+ b + 1)-labelling, we note c1 < c2 < c3 < c4
the colours of the 4 edges in the middle of the extended 4-star, and l1, l2, l3, l4
the colours of the pendant edges such that li is the colour of the pendant edge
connected to the edge of colour ci.

Claim 1. For all i, c1 < li < c4.
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Case 1

b ≤ x, y ≤ a

a

0

a+ b

2a+ b

3a+ bx

y

b

Case 3

a + b ≤ x, y ≤ 2a

x

0

a

2a+ b

3a+ by

a+ b

2a

Case 2

2a + b ≤ x, y ≤ 3a

x

0

a

2a

3a+ b2a+ b

3a

y

Fig. 5. The regimes of Theorem 4.

We only have to prove one inequality, as the other one is obtained by sym-
metry. If li ≤ c1 (bearing in mind also b < a), we have:

3a+ b ≥ c4 − li = (c1 − li) + (c2 − c1) + (c3 − c2) + (c4 − c3) ≥ 3a+ b.

So (c1, c2, c3, c4) = (b, a+ b, 2a+ b, 3a+ b), but a > b so there is no possible value
for l1, which is not possible. So c1 < li, and by symmetry li < c4.

Claim 2. There exists i ∈ {1, 2, 3} such that ci+1 − ci ≥ a+ b.

We suppose the contrary. We have proved c1 < l2, l3 < c4. If l2 < c2, then
c2 − c1 = c2 − l2 + l2 − c1 ≥ a + b, impossible. If c2 < l2 < c3, then c3 − c2 =
c3 − l2 + l2 − c2 ≥ a + b, impossible. So c3 < l2 < c4. Symmetrically, we
obtain c1 < l3 < c2. So c1 < l3 < c2 < c3 < l2 < c4, and we get: c4 − c1 ≥
(l3 − c1) + (c2 − l3) + (c3 − c2) + (l2 − c3) + (c4 − l2) ≥ 4b+ a > 3a+ b, which is
not possible.

Now we are in a position to derive the lemma, with the three regimes coming
from the three possibilities of Claim 2. If i = 1, then the inner edges of the
star are 0, a + b, 2a + b, 3a + b and the pendant edges come from {b, . . . , a}. If
i = 2, then the inner edges of the star are 0, a, 2a+ b, 3a + b and the pendant
edges come from {a + b, . . . , 2a}. If i = 3, then the inner edges of the star are
0, a, a+ b, 3a+ b and the pendant edges come from {2a+ b, . . . , 3a}. ⊓⊔

The variable gadget may be taken as a series of extended 4-stars chained to-
gether. In the following, the “top” pendant edges refer to one of the two free
pendant edges in each extended 4-star (not involved in the chaining together).
The following is a simple consequence of Lemma 7 and is depicted in Figure 6.

Lemma 8. Any valid L(a, b)-edge-(3a+ b + 1)-labelling of a variable gadget is
such that the top pendant edges are all coloured from precisely one of the sets
{b, . . . , a}, {a + b, . . . , 2a} or {2a + b, . . . , 3a}. Moreover, any colouring of the
top pendant edges from one of these sets is valid.
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•

b

•

b

•

b

•

a+b

•

a+b

•

a+b

•
a

•
0

•
2a+b

•
a

•
0

•
2a+b

•
a

•
0

•
2a+b

•
a

•

•

3a+b

•

3a+b

•

3a+b

•

b

•

b

•

b

Fig. 6. Three extended 4-stars chained together, to form a variable gadget for Theo-
rem 4. The pendant edges drawn on the top will be involved in clauses gadget. Suppose
the top pendant edges are coloured b (as is drawn). In order to fulfill distance 2 con-
straints in the clause gadget, we may need the inner star vertices adjacent to them to
be coloured not always a+b (for example, if that pendant edge b is adjacent in a clause
gadget to another edge coloured a + b). This is fine, the chaining construction works
when swapping inner edges a + b and 3a + b wherever necessary.

The clause gadget will be nothing more than a 2-star (a path) which is formed
from a new vertex uniting two (top) pendant edges from their respective variable
gadgets. The following is clear.

Lemma 9. A clause gadget is in a valid L(a, b)-edge-(3a+b+1)-labelling in the
case where its edges are coloured distinctly. If they are coloured the same, then
it can not be in a valid L(a, b)-edge-(3a+ b+ 1)-labelling.

We are now ready to prove Theorem 4.

Proof (Proof of Theorem 4.). We reduce from 3-COL. Let G be an instance
of 3-COL involving n vertices and m edges. Let us explain how to build an
instance G′ for L(a, b)-Edge-(3a + b + 1)-Labelling. Each particular vertex
may only appear in at most m edges (m is an upper ground on its degree),
so for each vertex we take a copy of the variable gadget which is m extended
4-stars chained together. Each particular instance of the vertex belongs to one
of the free (top) pendant edges of the variable gadget. For each edge of G we
use a 2-star to unite an instance of these free (top) pendant edges from the
corresponding two variable gadgets. Thus, we add a single vertex for each edge
of G, but no new edges in G′ (they already existed in the variable gadgets). We
claim that G is a yes-instance of 3-COL if and only if G′ is a yes-instance of
L(a, b)-Edge-(3a+ b+ 1)-Labelling.

(Forwards.) Take a proper 3-colouring of G and induce these pendant edge
labels on the corresponding variable gadgets according to the three regimes of



The Complexity of L(p, q)-Edge-Labelling 11

Lemma 7. For example, map colours 1, 2, 3 to b, a + b, 2a+ b. Plainly distinct
pendant edge labels can be consistently united in a 2-claw by the new vertex
that appeared in the clause gadget. Thus, we can see this is a valid L(a, b)-edge-
(3a+ b+ 1)-labelling of G′.

(Backwards.) From a valid L(a, b)-edge-(3a+b+1)-labelling of G′, we infer a
3-colouring of G by reading the pendant edge labels from the variable gadget of
the corresponding vertex and mapping these to their corresponding regime. The
consistent valuation of each variable follows from Lemma 8 and the fact that it
is proper (not-all-equal) follows from Lemma 9. ⊓⊔

6 Final Remarks

We give several directions for future work. First, determining the boundary for
k between P and NP-complete, in L(p, q)-Edge-k-Labelling, for all p, q is still
open except if (p, q) = (1, 1) and (p, q) = (2, 1). For (p, q) = (1, 1) it is known to
be 4 (it is in P for k < 4 and is NP-complete for k ≥ 4) [14]; and for (p, q) = (2, 1)
it is known to be 6 (it is in P for k < 6 and is NP-complete for k ≥ 6) [12].

A second open line of research concerns L(p, q)-Labelling for classes of
graphs that omit a single graph H as an induced subgraph (such graphs are
called H-free). A rich line of work in this vein includes [3], where it is noted,
for k ≥ 4, that L(1, 1)-k-Labelling is in P over H-free graphs, when H is a
linear forest; for all other H the problem remains NP-complete. If k is part of
the input and p = q = 1, the only remaining case is H = P1+P4 [2]. Corollary 2
covers, for every (p, q) 6= (0, 0), the case where H contains an induced claw (as
every line graph is claw-free). For bipartite graphs, and thus for H-free graphs
for all H with an odd cycle, the result for L(p, q)-k-Labelling is known from
[11], at least in the case p > q.

As our final open problem, for d ≥ 1, the complexity of L(p, q)-Labelling on
graphs of diameter at most d has, so far, only been determined for a, b ∈ {1, 2} [4].
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9. Hahn, G., Kratochv́ıl, J., Širáň, J., Sotteau, D.: On the injective chromatic number
of graphs. Discrete Mathematics 256, 179–192 (2002)

10. Holyer, I.: The NP-completeness of edge-coloring. SIAM Journal on Computing
10, 718–720 (1981)

11. Janczewski, R., Kosowski, A., Ma lafiejski, M.: The complexity of the L(p, q)-
labeling problem for bipartite planar graphs of small degree. Discrete Mathematics
309, 3270–3279 (2009)
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