Skip to main content

The Complexity of L(pq)-Edge-Labelling

  • Conference paper
  • First Online:
WALCOM: Algorithms and Computation (WALCOM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13174))

Included in the following conference series:

  • 576 Accesses

Abstract

The L(pq)-Edge-Labelling problem is the edge variant of the well-known L(pq)-Labelling problem. It is equivalent to the L(pq)-Labelling problem itself if we restrict the input of the latter problem to line graphs. So far, the complexity of L(pq)-Edge-Labelling was only partially classified in the literature. We complete this study for all \(p,q\ge 0\) by showing that whenever \((p,q)\ne (0,0)\), the L(pq)-Edge-Labelling problem is NP-complete. We do this by proving that for all \(p,q\ge 0\) except \(p=q=0\), there is an integer k so that L(pq)-Edge-k-Labelling is NP-complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See http://wwwusers.di.uniroma1.it/~calamo/survey.html for later results.

References

  1. Berthe, G., Martin, B., Paulusma, D., Smith, S.: The complexity of l(p, q)-edge-labelling. CoRR abs/2008.12226 (2020). https://arxiv.org/abs/2008.12226

  2. Bok, J., Jedličková, N., Martin, B., Paulusma, D., Smith, S.: Injective colouring for H-free graphs. In: Santhanam, R., Musatov, D. (eds.) CSR 2021. LNCS, vol. 12730, pp. 18–30. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79416-3_2

    Chapter  Google Scholar 

  3. Bok, J., Jedlic̆ková, N., Martin, B., Paulusma, D., Smith, S.: Acyclic, star and injective colouring: a complexity picture for H-free graphs. In: Proceedings of ESA 2020, LIPIcs, vol. 173, pp. 22:1–22:22 (2020)

    Google Scholar 

  4. Brause, C., Golovach, P., Martin, B., Paulusma, D., Smith, S.: Acyclic, star, and injective colouring: bounding the diameter. In: Kowalik, Ł, et al. (eds.) WG 2021. LNCS, vol. 12911, pp. 336–348. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86838-3_26

    Chapter  Google Scholar 

  5. Calamoneri, T.: The \({L}(h, k)\)-labelling problem: an updated survey and annotated bibliography. Comput. J. 54, 1344–1371 (2011)

    Article  Google Scholar 

  6. Fiala, J., Golovach, P.A., Kratochvíl, J.: Computational complexity of the distance constrained labeling problem for trees (Extended abstract). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5125, pp. 294–305. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70575-8_25

    Chapter  Google Scholar 

  7. Fiala, J., Kloks, T., Kratochvíl, J.: Fixed-parameter complexity of lambda-labelings. Discret. Appl. Math. 113, 59–72 (2001)

    Google Scholar 

  8. Griggs, J.R., Yeh, R.K.: Labelling graphs with a condition at distance 2. SIAM J. Discret. Math. 5, 586–595 (1992)

    Article  MathSciNet  Google Scholar 

  9. Hahn, G., Kratochvíl, J., Širáň, J., Sotteau, D.: On the injective chromatic number of graphs. Discret. Math. 256, 179–192 (2002)

    Article  MathSciNet  Google Scholar 

  10. Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10, 718–720 (1981)

    Article  MathSciNet  Google Scholar 

  11. Janczewski, R., Kosowski, A., Małafiejski, M.: The complexity of the \({L}(p, q)\)-labeling problem for bipartite planar graphs of small degree. Discret. Math. 309, 3270–3279 (2009)

    Article  MathSciNet  Google Scholar 

  12. Knop, D., Masarík, T.: Computational complexity of distance edge labeling. Discret. Appl. Math. 246, 80–98 (2018)

    Article  MathSciNet  Google Scholar 

  13. Lloyd, E.L., Ramanathan, S.: On the complexity of distance-\(2\) coloring. Proc. ICCI 1992, 71–74 (1992)

    Google Scholar 

  14. Mahdian, M.: On the computational complexity of strong edge coloring. Discret. Appl. Math. 118, 239–248 (2002)

    Article  MathSciNet  Google Scholar 

  15. Masarík, T.: Private communication (2020)

    Google Scholar 

  16. McCormick, S.: Optimal approximation of sparse hessians and its equivalence to a graph coloring problem. Math. Program. 26, 153–171 (1983)

    Article  MathSciNet  Google Scholar 

  17. Schaefer, T.J.: The complexity of satisfiability problems. In: STOC 1978, pp. 216–226 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barnaby Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Berthe, G., Martin, B., Paulusma, D., Smith, S. (2022). The Complexity of L(pq)-Edge-Labelling. In: Mutzel, P., Rahman, M.S., Slamin (eds) WALCOM: Algorithms and Computation. WALCOM 2022. Lecture Notes in Computer Science(), vol 13174. Springer, Cham. https://doi.org/10.1007/978-3-030-96731-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96731-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96730-7

  • Online ISBN: 978-3-030-96731-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics