Skip to main content

Vertex-Weighted Graphs: Realizable and Unrealizable Domains

  • Conference paper
  • First Online:
WALCOM: Algorithms and Computation (WALCOM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13174))

Included in the following conference series:

Abstract

Consider the following natural variation of the degree realization problem. Let \(G=(V, E)\) be a simple undirected graph of order n. Let \(f \in \mathbb {R}_{\ge 0}^{n}\) be a vector of vertex requirements, and let \(w\in \mathbb {R}_{\ge 0}^{n}\) be a vector of provided services at the vertices. Then w satisfies f on G if the constraints \(\sum _{j \in N(i)} w_j = f_i\) are satisfied for all \(i \in V\), where N(i) denotes the neighborhood of i. Given a requirements vector f, the Weighted Graph Realization problem asks for a suitable graph G and a vector w of provided services that satisfy f on G.

In [7] it is observed that any requirement vector where n is even can be realized. If n is odd, the problem becomes much harder. For the unsolved cases, the decision of whether f is realizable or not can be formulated as whether \(f_n\) (the largest requirement) lies within certain intervals. In [5] some intervals are identified where f can be realized, and their complements form \(\frac{n-3}{2}\) connected intervals (“unknown domains”) which we give odd indices \(k = 1,3,\ldots , n-4\). The unknown domain for \(k=1\) is shown to be unrealizable.

Our main result presents structural properties that a graph must have if it realizes a vector in one of these unknown domains for \(k \ge 3\). The unknown domains are characterized by inequalities which we translate to graph properties. Our analysis identifies several realizable sub-intervals, and shows that each of the unknown domains has at least one sub-interval that cannot be realized.

Supported in part by a US-Israel BSF grant (2018043). Partly supported by ARL Cooperative Grant, ARL Network Science CTA, W911NF-09-2-0053.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The lower and upper bound depend on f, i.e., \(\mathcal {LB}(f), \mathcal {UB}(f)\).

References

  1. Aigner, M., Triesch, E.: Realizability and uniqueness in graphs. Discr. Math. 136, 3–20 (1994)

    Article  MathSciNet  Google Scholar 

  2. Althöfer, I.: On optimal realizations of finite metric spaces by graphs. Discr. Comput. Geometry 3(2), 103–122 (1988). https://doi.org/10.1007/BF02187901

  3. Bar-Noy, A., Böhnlein, T., Lotker, Z., Peleg, D., Rawitz, D.: The generalized microscopic image reconstruction problem. In: 30th ISAAC, pp. 1–15 (2019)

    Google Scholar 

  4. Bar-Noy, A., Böhnlein, T., Lotker, Z., Peleg, D., Rawitz, D.: Weighted microscopic image reconstruction. In: 47th SOFSEM (to appear) (2021)

    Google Scholar 

  5. Bar-Noy, A., Böhnlein, T., Peleg, D., Rawitz, D.: On vertex-weighted graph realizations. In: 12th Conference on Algorithms and Complexity (CIAC) (2021)

    Google Scholar 

  6. Bar-Noy, A., Choudhary, K., Peleg, D., Rawitz, D.: Realizability of graph specifications: characterizations and algorithms. In: 25th SIROCCO, pp. 3–13 (2018)

    Google Scholar 

  7. Bar-Noy, A., Peleg, D., Rawitz, D.: Vertex-weighted realizations of graphs. Theor. Comput. Sci. 807, 56–72 (2020)

    Article  MathSciNet  Google Scholar 

  8. Blitzstein, J.K., Diaconis, P.: A sequential importance sampling algorithm for generating random graphs with prescribed degrees. Internet Math. 6(4), 489–522 (2010)

    Article  MathSciNet  Google Scholar 

  9. Choudum, S.A.: A simple proof of the Erdös-Gallai theorem on graph sequences. Bull. Australian Math. Soc. 33(1), 67–70 (1986)

    Google Scholar 

  10. Chung, F.R.K., Garrett, M.W., Graham, R.L., Shallcross, D.: Distance realization problems with applications to internet tomography. J. Comput. Syst. Sci. 63(3), 432–448 (2001)

    Article  MathSciNet  Google Scholar 

  11. Cloteaux, B.: Fast sequential creation of random realizations of degree sequences. Internet Math. 12(3), 205–219 (2016)

    Article  MathSciNet  Google Scholar 

  12. Culberson, J.C., Rudnicki, P.: A fast algorithm for constructing trees from distance matrices. Inf. Process. Lett. 30(4), 215–220 (1989)

    Article  MathSciNet  Google Scholar 

  13. Erdös, D., Gemulla, R., Terzi, E.: Reconstructing graphs from neighborhood data. ACM Trans. Knowl. Discov. Data, 8(4), 1–22 (2014)

    Google Scholar 

  14. Erdös, P., Gallai, T.: Graphs with prescribed degrees of vertices [hungarian]. Matematikai Lapok 11, 264–274 (1960)

    MATH  Google Scholar 

  15. Feder, T., Meyerson, A., Motwani, R., O’Callaghan, L., Panigrahy, R.: Representing graph metrics with fewest edges. In: 20th STACS, pp. 355–366 (2003)

    Google Scholar 

  16. Frank, A.: Connectivity augmentation problems in network design. In: Mathematical Programming: State of the Art. University Michigan, pp. 34–63 (1994)

    Google Scholar 

  17. Frank, H., Chou, W.: Connectivity considerations in the design of survivable networks. IEEE Trans. Circuit Theory, CT-17, 486–490 (1970)

    Google Scholar 

  18. Hakimi, S.L.: On realizability of a set of integers as degrees of the vertices of a linear graph -I. SIAM J. Appl. Math. 10(3), 496–506 (1962)

    Article  MathSciNet  Google Scholar 

  19. Hakimi, S.L., Yau, S.S.: Distance matrix of a graph and its realizability. Quart. Appl. Math. 22, 305–317 (1965)

    Article  MathSciNet  Google Scholar 

  20. Havel, V.: A remark on the existence of finite graphs [in Czech]. Casopis Pest. Mat. 80, 477–480 (1955)

    Article  Google Scholar 

  21. Mihail, M., Vishnoi, N.: On generating graphs with prescribed degree sequences for complex network modeling applications. In: 3rd ARACNE (2002)

    Google Scholar 

  22. Nieminen, J.: Realizing the distance matrix of a graph. J. Inf. Process. Cybern. 12(1/2), 29–31 (1976)

    MathSciNet  MATH  Google Scholar 

  23. Rao, S.B.: A survey of the theory of potentially P-graphic and forcibly P-graphic degree sequences. In: Rao, Siddani Bhaskara (ed.) Combinatorics and Graph Theory. LNM, vol. 885, pp. 417–440. Springer, Heidelberg (1981). https://doi.org/10.1007/BFb0092288

    Chapter  Google Scholar 

  24. Sierksma, G., Hoogeveen, H.: Seven criteria for integer sequences being graphic. J. Graph Theory 15(2), 223–231 (1991)

    Article  MathSciNet  Google Scholar 

  25. Simões-Pereira, J.M.S.: An algorithm and its role in the study of optimal graph realizations of distance matrices. Discret. Math. 79(3), 299–312 (1990)

    Article  MathSciNet  Google Scholar 

  26. Tatsuya, A., Nagamochi, H.: Comparison and enumeration of chemical graphs. Computat. Struct. Biotechnol. 5, e201302004 (2013)

    Article  Google Scholar 

  27. Tripathi, A., Tyagi, H.: A simple criterion on degree sequences of graphs. Discr. Appl. Math. 156(18), 3513–3517 (2008)

    Article  MathSciNet  Google Scholar 

  28. Tripathi, A., Venugopalan, S., West, D.B.: A short constructive proof of the erdos-gallai characterization of graphic lists. Discr. Math. 310(4), 843–844 (2010)

    Article  MathSciNet  Google Scholar 

  29. Tripathi, A., Vijay, S.: A note on a theorem of erdös & gallai. Discr. Math. 265(1–3), 417–420 (2003)

    Article  Google Scholar 

  30. Tyshkevich, R.I., Chernyak, A.A., Chernyak, Z.A.: Graphs and degree sequences: a survey. I. Cybernetics 23, 734–745 (1987)

    Article  Google Scholar 

  31. Tyshkevich, R.I., Chernyak, A.A., Chernyak, Z.A.: Graphs and degree sequences: a survey. II. Cybernetics 24, 137–152 (1988)

    Article  MathSciNet  Google Scholar 

  32. Tyshkevich, R.I., Chernyak, A.A., Chernyak, Z.A.: Graphs and degree sequences: a survey. III. Cybernetics 24, 539–548 (1988)

    Article  MathSciNet  Google Scholar 

  33. Varone, S.C.: A constructive algorithm for realizing a distance matrix. Eur. J. Oper. Res. 174(1), 102–111 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toni Böhnlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bar-Noy, A., Böhnlein, T., Peleg, D., Rawitz, D. (2022). Vertex-Weighted Graphs: Realizable and Unrealizable Domains. In: Mutzel, P., Rahman, M.S., Slamin (eds) WALCOM: Algorithms and Computation. WALCOM 2022. Lecture Notes in Computer Science(), vol 13174. Springer, Cham. https://doi.org/10.1007/978-3-030-96731-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96731-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96730-7

  • Online ISBN: 978-3-030-96731-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics