Skip to main content

Vertex-Weighted Graphs: Realizable and Unrealizable Domains

  • Conference paper
  • First Online:
WALCOM: Algorithms and Computation (WALCOM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13174))

Included in the following conference series:

  • 486 Accesses

Abstract

Consider the following natural variation of the degree realization problem. Let \(G=(V, E)\) be a simple undirected graph of order n. Let \(f \in \mathbb {R}_{\ge 0}^{n}\) be a vector of vertex requirements, and let \(w\in \mathbb {R}_{\ge 0}^{n}\) be a vector of provided services at the vertices. Then w satisfies f on G if the constraints \(\sum _{j \in N(i)} w_j = f_i\) are satisfied for all \(i \in V\), where N(i) denotes the neighborhood of i. Given a requirements vector f, the Weighted Graph Realization problem asks for a suitable graph G and a vector w of provided services that satisfy f on G.

In [7] it is observed that any requirement vector where n is even can be realized. If n is odd, the problem becomes much harder. For the unsolved cases, the decision of whether f is realizable or not can be formulated as whether \(f_n\) (the largest requirement) lies within certain intervals. In [5] some intervals are identified where f can be realized, and their complements form \(\frac{n-3}{2}\) connected intervals (“unknown domains”) which we give odd indices \(k = 1,3,\ldots , n-4\). The unknown domain for \(k=1\) is shown to be unrealizable.

Our main result presents structural properties that a graph must have if it realizes a vector in one of these unknown domains for \(k \ge 3\). The unknown domains are characterized by inequalities which we translate to graph properties. Our analysis identifies several realizable sub-intervals, and shows that each of the unknown domains has at least one sub-interval that cannot be realized.

Supported in part by a US-Israel BSF grant (2018043). Partly supported by ARL Cooperative Grant, ARL Network Science CTA, W911NF-09-2-0053.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The lower and upper bound depend on f, i.e., \(\mathcal {LB}(f), \mathcal {UB}(f)\).

References

  1. Aigner, M., Triesch, E.: Realizability and uniqueness in graphs. Discr. Math. 136, 3–20 (1994)

    Article  MathSciNet  Google Scholar 

  2. Althöfer, I.: On optimal realizations of finite metric spaces by graphs. Discr. Comput. Geometry 3(2), 103–122 (1988). https://doi.org/10.1007/BF02187901

  3. Bar-Noy, A., Böhnlein, T., Lotker, Z., Peleg, D., Rawitz, D.: The generalized microscopic image reconstruction problem. In: 30th ISAAC, pp. 1–15 (2019)

    Google Scholar 

  4. Bar-Noy, A., Böhnlein, T., Lotker, Z., Peleg, D., Rawitz, D.: Weighted microscopic image reconstruction. In: 47th SOFSEM (to appear) (2021)

    Google Scholar 

  5. Bar-Noy, A., Böhnlein, T., Peleg, D., Rawitz, D.: On vertex-weighted graph realizations. In: 12th Conference on Algorithms and Complexity (CIAC) (2021)

    Google Scholar 

  6. Bar-Noy, A., Choudhary, K., Peleg, D., Rawitz, D.: Realizability of graph specifications: characterizations and algorithms. In: 25th SIROCCO, pp. 3–13 (2018)

    Google Scholar 

  7. Bar-Noy, A., Peleg, D., Rawitz, D.: Vertex-weighted realizations of graphs. Theor. Comput. Sci. 807, 56–72 (2020)

    Article  MathSciNet  Google Scholar 

  8. Blitzstein, J.K., Diaconis, P.: A sequential importance sampling algorithm for generating random graphs with prescribed degrees. Internet Math. 6(4), 489–522 (2010)

    Article  MathSciNet  Google Scholar 

  9. Choudum, S.A.: A simple proof of the Erdös-Gallai theorem on graph sequences. Bull. Australian Math. Soc. 33(1), 67–70 (1986)

    Google Scholar 

  10. Chung, F.R.K., Garrett, M.W., Graham, R.L., Shallcross, D.: Distance realization problems with applications to internet tomography. J. Comput. Syst. Sci. 63(3), 432–448 (2001)

    Article  MathSciNet  Google Scholar 

  11. Cloteaux, B.: Fast sequential creation of random realizations of degree sequences. Internet Math. 12(3), 205–219 (2016)

    Article  MathSciNet  Google Scholar 

  12. Culberson, J.C., Rudnicki, P.: A fast algorithm for constructing trees from distance matrices. Inf. Process. Lett. 30(4), 215–220 (1989)

    Article  MathSciNet  Google Scholar 

  13. Erdös, D., Gemulla, R., Terzi, E.: Reconstructing graphs from neighborhood data. ACM Trans. Knowl. Discov. Data, 8(4), 1–22 (2014)

    Google Scholar 

  14. Erdös, P., Gallai, T.: Graphs with prescribed degrees of vertices [hungarian]. Matematikai Lapok 11, 264–274 (1960)

    MATH  Google Scholar 

  15. Feder, T., Meyerson, A., Motwani, R., O’Callaghan, L., Panigrahy, R.: Representing graph metrics with fewest edges. In: 20th STACS, pp. 355–366 (2003)

    Google Scholar 

  16. Frank, A.: Connectivity augmentation problems in network design. In: Mathematical Programming: State of the Art. University Michigan, pp. 34–63 (1994)

    Google Scholar 

  17. Frank, H., Chou, W.: Connectivity considerations in the design of survivable networks. IEEE Trans. Circuit Theory, CT-17, 486–490 (1970)

    Google Scholar 

  18. Hakimi, S.L.: On realizability of a set of integers as degrees of the vertices of a linear graph -I. SIAM J. Appl. Math. 10(3), 496–506 (1962)

    Article  MathSciNet  Google Scholar 

  19. Hakimi, S.L., Yau, S.S.: Distance matrix of a graph and its realizability. Quart. Appl. Math. 22, 305–317 (1965)

    Article  MathSciNet  Google Scholar 

  20. Havel, V.: A remark on the existence of finite graphs [in Czech]. Casopis Pest. Mat. 80, 477–480 (1955)

    Article  Google Scholar 

  21. Mihail, M., Vishnoi, N.: On generating graphs with prescribed degree sequences for complex network modeling applications. In: 3rd ARACNE (2002)

    Google Scholar 

  22. Nieminen, J.: Realizing the distance matrix of a graph. J. Inf. Process. Cybern. 12(1/2), 29–31 (1976)

    MathSciNet  MATH  Google Scholar 

  23. Rao, S.B.: A survey of the theory of potentially P-graphic and forcibly P-graphic degree sequences. In: Rao, Siddani Bhaskara (ed.) Combinatorics and Graph Theory. LNM, vol. 885, pp. 417–440. Springer, Heidelberg (1981). https://doi.org/10.1007/BFb0092288

    Chapter  Google Scholar 

  24. Sierksma, G., Hoogeveen, H.: Seven criteria for integer sequences being graphic. J. Graph Theory 15(2), 223–231 (1991)

    Article  MathSciNet  Google Scholar 

  25. Simões-Pereira, J.M.S.: An algorithm and its role in the study of optimal graph realizations of distance matrices. Discret. Math. 79(3), 299–312 (1990)

    Article  MathSciNet  Google Scholar 

  26. Tatsuya, A., Nagamochi, H.: Comparison and enumeration of chemical graphs. Computat. Struct. Biotechnol. 5, e201302004 (2013)

    Article  Google Scholar 

  27. Tripathi, A., Tyagi, H.: A simple criterion on degree sequences of graphs. Discr. Appl. Math. 156(18), 3513–3517 (2008)

    Article  MathSciNet  Google Scholar 

  28. Tripathi, A., Venugopalan, S., West, D.B.: A short constructive proof of the erdos-gallai characterization of graphic lists. Discr. Math. 310(4), 843–844 (2010)

    Article  MathSciNet  Google Scholar 

  29. Tripathi, A., Vijay, S.: A note on a theorem of erdös & gallai. Discr. Math. 265(1–3), 417–420 (2003)

    Article  Google Scholar 

  30. Tyshkevich, R.I., Chernyak, A.A., Chernyak, Z.A.: Graphs and degree sequences: a survey. I. Cybernetics 23, 734–745 (1987)

    Article  Google Scholar 

  31. Tyshkevich, R.I., Chernyak, A.A., Chernyak, Z.A.: Graphs and degree sequences: a survey. II. Cybernetics 24, 137–152 (1988)

    Article  MathSciNet  Google Scholar 

  32. Tyshkevich, R.I., Chernyak, A.A., Chernyak, Z.A.: Graphs and degree sequences: a survey. III. Cybernetics 24, 539–548 (1988)

    Article  MathSciNet  Google Scholar 

  33. Varone, S.C.: A constructive algorithm for realizing a distance matrix. Eur. J. Oper. Res. 174(1), 102–111 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toni Böhnlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bar-Noy, A., Böhnlein, T., Peleg, D., Rawitz, D. (2022). Vertex-Weighted Graphs: Realizable and Unrealizable Domains. In: Mutzel, P., Rahman, M.S., Slamin (eds) WALCOM: Algorithms and Computation. WALCOM 2022. Lecture Notes in Computer Science(), vol 13174. Springer, Cham. https://doi.org/10.1007/978-3-030-96731-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96731-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96730-7

  • Online ISBN: 978-3-030-96731-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics