Skip to main content

Model-Based Multi-agent Policy Optimization with Dynamic Dependence Modeling

  • Conference paper
  • First Online:
Parallel and Distributed Computing, Applications and Technologies (PDCAT 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13148))

  • 1602 Accesses

Abstract

This paper explores the combination of model-based methods and multi-agent reinforcement learning (MARL) for more efficient coordination among multiple agents. A decentralized model-based MARL method, Policy Optimization with Dynamic Dependence Modeling (POD2M), is proposed to dynamically determine the importance of other agents’ information during the model building process. In POD2M, the agents adapt their mutual dependence during building their own dynamic models in order to make a trade-off between an individual-learning process and a coordinated-learning process. Once the dynamic models have been built, the policies are then trained based on one-step model predictive rollouts. Empirical experiments on both cooperative and competitive scenarios indicate that our method can achieve higher sample efficiency against the compared model-free MARL algorithms, and outperforms the centralized method in large domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  2. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  3. Toyama, D., et al.: Androidenv: a reinforcement learning platform for android. arXiv preprint arXiv:2105.13231 (2021)

  4. Luo, Y., Xu, H., Li, Y., Tian, Y., Darrell, T., Ma, T.: Algorithmic framework for model-based deep reinforcement learning with theoretical guarantees. arXiv preprint arXiv:1807.03858 (2018)

  5. Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M.: Deterministic policy gradient algorithms. In International Conference on Machine Learning, pp. 387–395. PMLR (2014)

    Google Scholar 

  6. Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P.: Trust region policy optimization. In: International Conference on Machine Learning, pp. 1889–1897. PMLR (2015)

    Google Scholar 

  7. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

  8. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor. In: International Conference on Machine Learning, pp. 1861–1870. PMLR (2018)

    Google Scholar 

  9. Moerland, T.M., Broekens, J., Jonker, C.M.: Model-based reinforcement learning: a survey. arXiv preprint arXiv:2006.16712 (2020)

  10. Hafner, D., et al.: Learning latent dynamics for planning from pixels. In: International Conference on Machine Learning, pp. 2555–2565. PMLR (2019)

    Google Scholar 

  11. Schrittwieser, J., et al.: Mastering atari, go, chess and shogi by planning with a learned model. Nature 588(7839), 604–609 (2020)

    Article  Google Scholar 

  12. Todorov, E., Erez, T., Tassa, Y.: Mujoco: a physics engine for model-based control. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033. IEEE (2012)

    Google Scholar 

  13. Chao, Yu., Dong, Y., Li, Y., Chen, Y.: Distributed multi-agent deep reinforcement learning for cooperative multi-robot pursuit. J. Eng. 2020(13), 499–504 (2020)

    Article  Google Scholar 

  14. Vinyals, O., et al.: Starcraft II: a new challenge for reinforcement learning. arXiv preprint arXiv:1708.04782 (2017)

  15. Wu, Z., Yu, C., Ye, D., Zhang, J., Piao, H., Zhuo, H.H.: Coordinated proximal policy optimization. arXiv preprint arXiv:2111.04051 (2021)

  16. Wang, R.E., et al.: Model-based reinforcement learning for decentralized multiagent rendezvous. In Conference on Robot Learning (CoRL), pp. 711–725 (2020)

    Google Scholar 

  17. Chao, Yu., et al.: Distributed multiagent coordinated learning for autonomous driving in highways based on dynamic coordination graphs. IEEE Trans. Intell. Transp. Syst. 21(2), 735–748 (2019)

    Google Scholar 

  18. Willemsen, D., Coppola, M., Che de Croon, G.: Mambpo: sample-efficient multi-robot reinforcement learning using learned world models. arXiv preprint arXiv:2103.03662 (2021)

  19. Chao, Yu., Zhang, M., Ren, F., Tan, G.: Multiagent learning of coordination in loosely coupled multiagent systems. IEEE Trans. Cybernet. 45(12), 2853–2867 (2015)

    Article  Google Scholar 

  20. Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., Mordatch, I.: Multi-agent actor-critic for mixed cooperative-competitive environments. In: Advances in Neural Information Processing Systems, pp. 6382–6393 (2017)

    Google Scholar 

  21. Nagabandi, A., Kahn, G., Fearing, R.S., Levine, S.: Neural network dynamics for model-based deep reinforcement learning with model-free fine-tuning. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 7559–7566. IEEE (2018)

    Google Scholar 

  22. Chua, K., Calandra, R., McAllister, R., Levine, S.: Deep reinforcement learning in a handful of trials using probabilistic dynamics models. In: Advances in Neural Information Processing Systems, pp. 4759–4770 (2018)

    Google Scholar 

  23. Sutton, R.S.: Integrated architectures for learning, planning, and reacting based on approximating dynamic programming. In: Machine Learning Proceedings 1990, pp. 216–224. Elsevier (1990)

    Google Scholar 

  24. Wang, T., Ba, J.: Exploring model-based planning with policy networks. arXiv preprint arXiv:1906.08649 (2019)

  25. Feinberg, V., Wan, A., Stoica, I., Jordan, M.I., Gonzalez, J.E., Levine, S.: Model-based value estimation for efficient model-free reinforcement learning. arXiv preprint arXiv:1803.00101 (2018)

  26. Clavera, I., Fu, V., Abbeel, P.: Model-augmented actor-critic: Backpropagating through paths. In: International Conference on Learning Representations (2020)

    Google Scholar 

  27. Janner, M., Fu, J., Zhang, M., Levine, S.: When to trust your model: model-based policy optimization. In: Advances in Neural Information Processing Systems, pp. 12498–12509 (2019)

    Google Scholar 

  28. Rajeswaran, A., Mordatch, I., Kumar, V.: A game theoretic framework for model based reinforcement learning. In: International Conference on Machine Learning, pp. 7953–7963. PMLR (2020)

    Google Scholar 

  29. Iqbal, S., Sha, F.: Actor-attention-critic for multi-agent reinforcement learning. In: International Conference on Machine Learning, pp. 2961–2970. PMLR (2019)

    Google Scholar 

  30. Sunehag, P., et al.: Value-decomposition networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296 (2017)

  31. Du, Y., Han, L., Fang, M., Liu, J., Dai, T., Tao, D.: Liir: learning individual intrinsic reward in multi-agent reinforcement learning. In: Advances in Neural Information Processing Systems, pp. 4403–4414 (2019)

    Google Scholar 

  32. Wang, T., Dong, H., Lesser, V., Zhang, C.: Roma: multi-agent reinforcement learning with emergent roles. In: International Conference on Machine Learning, pp. 9876–9886 (2020)

    Google Scholar 

  33. Park, Y.J., Cho, Y.S., Kim, S.B.: Multi-agent reinforcement learning with approximate model learning for competitive games. PLoS ONE 14(9), e0222215 (2019)

    Article  Google Scholar 

  34. Zhang, W., Wang, X., Shen, J., Zhou, M.: Model-based multi-agent policy optimization with adaptive opponent-wise rollouts. arXiv preprint arXiv:2105.03363 (2021)

  35. Konda, V.R., Tsitsiklis, J.N.: Actor-critic algorithms. In: Advances in Neural Information Processing Systems, pp. 1008–1014 (2000)

    Google Scholar 

  36. Kurutach, T., Clavera, I., Duan, Y., Tamar, A., Abbeel, P.: Model-ensemble trust-region policy optimization. In: International Conference on Learning Representations (2018)

    Google Scholar 

  37. D’Oro, P., Jaśkowski, W.: How to learn a useful critic? Model-based action-gradient-estimator policy optimization. In: Advances in Neural Information Processing Systems, pp. 313–324 (2020)

    Google Scholar 

  38. Sukhbaatar, S., Fergus, R., et al.: Learning multiagent communication with backpropagation. In: Advances in Neural Information Processing Systems, pp. 2244–2252 (2016)

    Google Scholar 

  39. Wang, T., Wang, J., Wu, Y., Zhang, C.: Influence-based multi-agent exploration. In: International Conference on Learning Representations (2019)

    Google Scholar 

  40. He, H., Boyd-Graber, J., Kwok, K., Daumé III, H.: Opponent modeling in deep reinforcement learning. In: International Conference on Machine Learning, pp. 1804–1813. PMLR (2016)

    Google Scholar 

  41. Vaswani, A., et al.:. Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  42. Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S.: Counterfactual multi-agent policy gradients. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, pp. 2974–2982 (2018)

    Google Scholar 

  43. Samvelyan, M., et al.: The starcraft multi-agent challenge. In: International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 2186–2188 (2019)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China under Grant 62076259.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, B., Yu, C., Wu, Z. (2022). Model-Based Multi-agent Policy Optimization with Dynamic Dependence Modeling. In: Shen, H., et al. Parallel and Distributed Computing, Applications and Technologies. PDCAT 2021. Lecture Notes in Computer Science(), vol 13148. Springer, Cham. https://doi.org/10.1007/978-3-030-96772-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96772-7_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96771-0

  • Online ISBN: 978-3-030-96772-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics