Abstract
\(\mathrm{ECC}^2\) is an public key encryption system based on elliptic code. It can resist known attacks based on the special structures of algebraic geometric code. However, the computational overhead of decryption of \(\mathrm{ECC}^2\) is unsatisfactory, because the list decoding algorithm occupies a major part of the computational overhead of decryption of \(\mathrm{ECC}^2\). Therefore, we propose our module basis reduction interpolation of list decoding for elliptic code to speed up the decryption of \(\mathrm{ECC}^2\). The algorithm we proposed is based on the theory of Gr\(\ddot{\mathrm{o}}\)bner basis of modules. By implementing our proposed algorithm combined with \(\mathrm{ECC}^2\), it shows that the proposed algorithm performs better than the list decoding algorithms used in \(\mathrm{ECC}^2\).
Supported by Guangdong Major Project of Basic and Applied Basic Research (2019B030302008) and the National Natural Science Foundation of China (No. 61972429).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Classic McEliece: conservative code-based cryptography. https://classic.mceliece.org/index.html Accessed 10 Oct 2020
Post-Quantum Cryptography PQC. https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions Accessed 26 Sep 2021
Barbier, M., Barreto, P.: Key reduction of McEliece’s cryptosystem using list decoding. In: IEEE International Symposium on Information Theory Proceedings, pp. 2681–2685 (2011)
Beelen, P., Brander, K.: Efficient list decoding of a class of algebraic geometry codes. Adv. Math. Commun. 4(4), 485–518 (2010)
Cox, D.A., Little, J., O’Shea, D.: Using Algebraic Geometry, 2nd edn. Springer, New York (2005). https://doi.org/10.1007/b138611
Elias, P.: List decoding for noisy channels. Research Laboratory of Electronics, Massachusetts Institute of Technology (1957)
Guruswami, V., Sudan, M.: Improved decoding of reed-Solomon and algebraic-geometry codes. IEEE Trans. Inf. Theor. 45(6), 1757–1767 (1999)
Lee, K., O’Sullivan, M.: List decoding of Hermitian codes using gr\(\ddot{\rm o}\)bner bases. J. Symbolic Comput. 44(12), 1662–1675 (2005)
Lee, K., O’Sullivan, M.: List decoding of reed-Solomon codes from a gr\(\ddot{\rm o}\)bner basis perspective. J. Symbolic Comput. 43(9), 645–658 (2008)
Sakata, S.: On fast interpolation method for Guruswami-Sudan list decoding of one-point algebraic-geometry codes. In: Boztaş, S., Shparlinski, I.E. (eds.) AAECC 2001. LNCS, vol. 2227, pp. 172–181. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45624-4_18
Shokrollahi, M., Wasserman, H.: List decoding of algebraic-geometric codes. IEEE Trans. Inf. Theor. 45(2), 432–437 (1999)
Sudan, M.: Decoding of reed-solomon codes beyond the error-correction bound. J. Complex. 13(1), 180–193 (1997)
Wan, Y., Chen, L., Zhang, F.: Guruswami-Sudan decoding of elliptic codes through module basis reduction. IEEE Trans. Inf. Theor. 67(11), 7197–7209 (2021)
Wu, X., Siegel, P.: Efficient root-finding algorithm with applications to list decoding of algebraic-geometric codes. IEEE Trans. Inf. Theor. 47(6), 2579–2587 (2001)
Zhang F., Liu, S.: Solving ECDLP via list decoding. In: Steinfeld, R., Yuen, T. (eds.) Provable Security. ProvSec 2019. Lecture Notes in Computer Science, vol. 11821, pp. 222–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31919-9_13
Zhang, F., Zhang, Z., Guan, P.: ECC2: Error correcting code and elliptic curve based cryptosystem. Inf. Sci. 526, 301–320 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Guan, P., Wan, Y., Zhang, Z., Zhang, F. (2022). Efficient List Decoding Applied to \(\mathrm{ECC}^2\). In: Shen, H., et al. Parallel and Distributed Computing, Applications and Technologies. PDCAT 2021. Lecture Notes in Computer Science(), vol 13148. Springer, Cham. https://doi.org/10.1007/978-3-030-96772-7_52
Download citation
DOI: https://doi.org/10.1007/978-3-030-96772-7_52
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-96771-0
Online ISBN: 978-3-030-96772-7
eBook Packages: Computer ScienceComputer Science (R0)