Skip to main content

A Molecular Dynamics Based Multi-scale Platelet Aggregation Model and Its High-Throughput Simulation

  • Conference paper
  • First Online:
Parallel and Distributed Computing, Applications and Technologies (PDCAT 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13148))

  • 1481 Accesses

Abstract

In this paper, we develop a multi-scale model to simulate the aggregation of platelets in a low shear-coefficient flow. In this multi-scale model, the Morse potential is used to describe the interaction between the \(\alpha \mathrm {II}b\beta 3\) receptor and fibrinogen, the dissipative particle dynamics (DPD) is used to simulate fluids on the macro-scale, and the coarse-grained molecular dynamics (CGMD) is used to simulate the fine-scale receptors’ biochemical reactions. Moreover, with the assistance of the high-throughput simulations on the heterogeneous cluster, we calibrate the parameters for the Morse potential which are critical in the proper simulation of the aggregation of platelets. With this model, we simulate the long-term behaviour of thrombus formation constructed by many platelets. Our simulating results are consistent with in-vitro experiments on contact areas and detaching forces. Moreover, it reduces the computational cost significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duc, D.-H., Nhan, P.-T., Xijun, F.: An implementation of no-slip boundary conditions in DPD. Comput. Mech. 35(1), 24–29 (2004)

    Article  Google Scholar 

  2. Durrant, T.N., van den Bosch, M.T., Hers, I.: Integrin \(\alpha \)IIb\(\beta \)3 outside-in signaling. Blood 130(14), 1607–1619 (2017)

    Article  Google Scholar 

  3. Gao, C., Zhang, P., Marom, G., Deng, Y., Bluestein, D.: Reducing the effects of compressibility in DPD-based blood flow simulations through severe stenotic microchannels. J. Comput. Phys. 335, 812–827 (2017)

    Article  MathSciNet  Google Scholar 

  4. Gupta, P., Zhang, P., Sheriff, J., Bluestein, D., Deng, Y.: A multiscale model for recruitment aggregation of platelets by correlating with in vitro results. Cell. Mol. Bioeng. 12(4), 327–343 (2019)

    Article  Google Scholar 

  5. Gupta, P., Zhang, P., Sheriff, J., Bluestein, D., Deng, Y.: A multiscale model for multiple platelet aggregation in shear flow. Biomech. Model. Mechanobiol. 20(3), 1013–1030 (2021). https://doi.org/10.1007/s10237-021-01428-6

    Article  Google Scholar 

  6. Han, C., Zhang, P., Bluestein, D., Cong, G., Deng, Y.: Artificial intelligence for accelerating time integrations in multiscale modeling. J. Comput. Phys. 427, 110053 (2021)

    Article  MathSciNet  Google Scholar 

  7. Lan, Y.: Bridging steady states with renormalization group analysis. Phys. Rev. E 87, 012914 (2013)

    Google Scholar 

  8. Li, G., Ye, T., Wang, S., Li, X., UI Haq, R.: Numerical design of a highly efficient microfluidic chip for blood plasma separation. 32(3), 031903 (2020)

    Google Scholar 

  9. Litvinov, R.I., Farrell, D.H., Weisel, J.W., Bennett, J.S.: The platelet integrin \(\alpha \)IIb\(\beta \)3 differentially interacts with fibrin versus fibrinogen. 291(15), 7858–7867 (2016)

    Google Scholar 

  10. Tanaka, N., Takano, T.N.: Microscopic-scale simulation of blood flow using sph method. 02(04), 555–568 (2005)

    Google Scholar 

  11. Vilar, R., Fish, R.J., Casini, A., Neerman-Arbez, M.: Fibrin(ogen) in human disease: both friend and foe. Haematologica 105(2), 284–296 (2020)

    Article  Google Scholar 

  12. Wang, L., Chen, Z., Zhang, J., Zhang, X., Wu, Z.J.: Modeling clot formation of shear-injured platelets in flow by a dissipative particle dynamics method. Bull. Math. Biol. 82(7), June 2020

    Google Scholar 

  13. Willlemsen, S.M., Hoefsloot, H.C.J., Iedema, P.D.: No-slip boundary condition in dissipative particle dynamics. 11(05), 881–890 (2000)

    Google Scholar 

  14. Yamaguchi, T., et al.: Particle-based methods for multiscale modeling of blood flow in the circulation and in devices: challenges and future directions. Ann. Biomed. Eng. 38(3), 1225–1235 (2010)

    Google Scholar 

  15. Ye, T., Phan-Thien, N., Lim, C.T., Peng, L., Shi, H.: Hybrid smoothed dissipative particle dynamics and immersed boundary method for simulation of red blood cells in flows. 95(6), 063314, June 2017

    Google Scholar 

  16. Yesudasan, S., Wang, X., Averett, R.D.: Coarse-grained molecular dynamics simulations of fibrin polymerization: effects of thrombin concentration on fibrin clot structure. J. Mol. Model. 24(5), 1–14 (2018). https://doi.org/10.1007/s00894-018-3642-7

    Article  Google Scholar 

  17. Yesudasan, S., Wang, X., Averett, R.D.: Fibrin polymerization simulation using a reactive dissipative particle dynamics method. Biomech. Model. Mechanobiol. 17(5), 1389–1403 (2018). https://doi.org/10.1007/s10237-018-1033-8

    Article  Google Scholar 

  18. Zhang, N., Zhang, P., Kang, W., Bluestein, D., Deng, Y.: Parameterizing the morse potential for coarse-grained modeling of blood plasma. J. Comput. Phys. 257, 726–736 (2014)

    Article  MathSciNet  Google Scholar 

  19. Zhang, P., Gao, C., Zhang, N., Slepian, M.J., Deng, Y., Bluestein, D.: Multiscale particle-based modeling of flowing platelets in blood plasma using dissipative particle dynamics and coarse grained molecular dynamics. Cell. Mol. Bioeng. 7(4), 552–574 (2014)

    Article  Google Scholar 

  20. Zhang, P., Zhang, L., Slepian, M.J., Deng, Y., Bluestein, D.: A multiscale biomechanical model of platelets: correlating with in-vitro results. J. Biomech. 50, 1–15 (2016)

    Google Scholar 

  21. Zhang, P., Zhang, N., Deng, Y., Bluestein, D.: A multiple time stepping algorithm for efficient multiscale modeling of platelets flowing in blood plasma. J. Comput. Phys. 284, 668–686 (2015)

    Article  MathSciNet  Google Scholar 

  22. Zhang, Y., Qian, H.: Porting and optimizing g-BLASTN to the ROCm-based supercomputer. In 2020 International Conference on Computer Science and Management Technology (ICCSMT). IEEE, November 2020

    Google Scholar 

Download references

Acknowledgment

The research was supported in part by NSFC Grant 12071496, Guangdong Provincial NSF Grant 2017B030311001, Guangdong Province Key Laboratory of Computational Science at the Sun Yat-sen University (2020B1212060032), and Nantong Science & Technology Research Plan (No. JC2021133). This work also benefited from resources made available at the National Supercomputer Center in Kunshan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsong Zou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Z., Zou, Q. (2022). A Molecular Dynamics Based Multi-scale Platelet Aggregation Model and Its High-Throughput Simulation. In: Shen, H., et al. Parallel and Distributed Computing, Applications and Technologies. PDCAT 2021. Lecture Notes in Computer Science(), vol 13148. Springer, Cham. https://doi.org/10.1007/978-3-030-96772-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96772-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96771-0

  • Online ISBN: 978-3-030-96772-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics