Skip to main content

Federated Reinforcement Learning for Portfolio Management

  • Chapter
  • First Online:
Federated Learning

Abstract

Financial portfolio management involves the constant redistribution of wealth over a set of financial assets and can, by its sequential nature, be modelled using reinforcement learning (RL). Federated learning allows traders to jointly train models without revealing their private data. We show on S&P500 market data how personalized, robust federated reinforcement learning using Fed+ produces trading policies that offer higher annual returns and Sharpe ratios than other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We use the following 50 assets from the S&P500 technology sector: AAPL, ADBE, ADI, ADP, ADS, AKAM, AMD, APH, ATVI, AVGO, CHTR, CMCSA, CRM, CSCO, CTL, CTSH, CTXS, DIS, DISH, DXC, FB, FFIV, FISV, GLW, GOOG, IBM, INTC, INTU, IPG, IT, JNPR, KLAC, LRCX, MA, MCHP, MSFT, MSI, NFLX, NTAP, OMC, PAYX, QCOM, SNPS, STX, T, TEL, VZ, WDC, WU, and XRX.

References

  1. Almahdi S, Yang SY (2017) An adaptive portfolio trading system: a risk-return portfolio optimization using recurrent reinforcement learning with expected maximum drawdown. Expert Syst Appl 87:267–279

    Article  Google Scholar 

  2. Begleiter R, El-Yaniv R, Yona G (2004) On prediction using variable order Markov models. J Artif Intell Res 22:385–421

    Article  MathSciNet  Google Scholar 

  3. Berndt DJ, Clifford J (1994) Using dynamic time warping to find patterns in time series. In: KDD workshop, Seattle, vol 10, pp 359–370

    Google Scholar 

  4. Black F, Scholes M (1973) The pricing of options and corporate liabilities. J Polit Econ 81(3):637–654

    Article  MathSciNet  Google Scholar 

  5. Buehler H, Gonon L, Teichmann J, Wood B (2019) Deep hedging. Quant Financ 19(8):1271–1291

    Article  MathSciNet  Google Scholar 

  6. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp 2672–2680

    Google Scholar 

  7. Haugen RA, Haugen RA (2001) Modern investment theory, vol 5. Prentice Hall, Upper Saddle River

    Google Scholar 

  8. Jiang Z, Xu D, Liang J (2017) A deep reinforcement learning framework for the financial portfolio management problem. arXiv preprint arXiv:170610059

    Google Scholar 

  9. Kariya T, Liu RY (2003) Options, futures and other derivatives. In: Asset pricing. Springer, Boston, MA, pp 9–26

    Chapter  Google Scholar 

  10. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

    Google Scholar 

  11. Li T, Sahu AK, Zaheer M, Sanjabi M, Talwalkar A, Smith V (2020) Federated optimization in heterogeneous networks. Proc Mach Learn Syst 2:429–450

    Google Scholar 

  12. Markowitz H (1959) Portfolio selection: efficient diversification of investments, vol 16. Wiley, New York

    Google Scholar 

  13. McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA (2017) Communication-efficient learning of deep networks from decentralized data. In: Artificial intelligence and statistics. PMLR, pp 1273–1282

    Google Scholar 

  14. Pillutla K, Kakade SM, Harchaoui Z (2019) Robust aggregation for federated learning. arXiv preprint arXiv:191213445

    Google Scholar 

  15. Sharpe WF (1966) Mutual fund performance. J Bus 39(1):119–138

    Article  Google Scholar 

  16. Silver D, Lever G, Heess N, Degris T, Wierstra D, Riedmiller M (2014) Deterministic policy gradient algorithms. In: Proceedings of the 31st international conference on international conference on machine learning – JMLR.org, ICML’14, vol 32, pp I–387–I–395

    Google Scholar 

  17. Sutton RS, McAllester DA, Singh SP, Mansour Y (2000) Policy gradient methods for reinforcement learning with function approximation. In: Advances in neural information processing systems, pp 1057–1063

    Google Scholar 

  18. Ye Y, Pei H, Wang B, Chen PY, Zhu Y, Xiao J, Li B (2020) Reinforcement-learning based portfolio management with augmented asset movement prediction states. In: Proceedings of the AAAI conference on artificial intelligence, vol 34, pp 1112–1119

    Article  Google Scholar 

  19. Yin D, Chen Y, Kannan R, Bartlett P (2018) Byzantine-robust distributed learning: towards optimal statistical rates. PMLR, Stockholmsmässan, Stockholm, vol 80. Proceedings of Machine Learning Research, pp 5650–5659. http://proceedings.mlr.press/v80/yin18a.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Wynter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, P., Wynter, L., Lim, S.H. (2022). Federated Reinforcement Learning for Portfolio Management. In: Ludwig, H., Baracaldo, N. (eds) Federated Learning. Springer, Cham. https://doi.org/10.1007/978-3-030-96896-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96896-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96895-3

  • Online ISBN: 978-3-030-96896-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics