Skip to main content

The Origin and Value of Disagreement Among Data Labelers: A Case Study of Individual Differences in Hate Speech Annotation

  • Conference paper
  • First Online:
Information for a Better World: Shaping the Global Future (iConference 2022)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13192))

Included in the following conference series:

Abstract

Human annotated data is the cornerstone of today’s artificial intelligence efforts, yet data labeling processes can be complicated and expensive, especially when human labelers disagree with each other. The current work practice is to use majority-voted labels to overrule the disagreement. However, in the subjective data labeling tasks such as hate speech annotation, disagreement among individual labelers can be difficult to resolve. In this paper, we explored why such disagreements occur using a mixed-method approach – including interviews with experts, concept mapping exercises, and self-reporting items – to develop a multidimensional scale for distilling the process of how annotators label a hate speech corpus. We tested this scale with 170 annotators in a hate speech annotation task. Results showed that our scale can reveal facets of individual differences among annotators (e.g., age, personality, etc.), and these facets’ relationships to an annotator’s final label decision of an instance. We suggest that this work contributes to the understanding of how humans annotate data. The proposed scale can potentially improve the value of the currently discarded minority-vote labels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggarwal, A., Maurya, K., Chaudhary, A.: Comparative study for predicting the severity of cyberbullying across multiple social media platforms. In: 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 871–877 (2020)

    Google Scholar 

  2. Assimakopoulos, S., Muskat, R.V., van der Plas, L., Gatt, A.: Annotating for hate speech: the MaNeCo corpus and some input from critical discourse analysis. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 5088–5097 (2020). https://www.aclweb.org/anthology/2020.lrec-1.626. Accessed 23 Sept 2020

  3. Awal, Md.R., Cao, R., Lee, R.K.-W., Mitrović, S.: On analyzing annotation consistency in online abusive behavior datasets. arXiv:2006.13507 [cs] (2020). http://arxiv.org/abs/2006.13507. Accessed 10 Aug 2020

  4. Basile, V., et al.: Semeval-2019 task 5: multilingual detection of hate speech against immigrants and women in twitter. In: Proceedings of the 13th International Workshop on Semantic Evaluation, pp. 54–63 (2019)

    Google Scholar 

  5. Beaujean, A.A.: Latent Variable Modeling Using R: A Step-by-Step Guide. Routledge, London (2014)

    Google Scholar 

  6. Benesch, S.: Dangerous speech: a proposal to prevent group violence. In: Voices That Poison: Dangerous Speech Project (2012)

    Google Scholar 

  7. Benikova, D., Wojatzki, M., Zesch, T.: What does this imply? Examining the impact of implicitness on the perception of hate speech. In: Rehm, G., Declerck, T. (eds.) GSCL 2017. LNCS (LNAI), vol. 10713, pp. 171–179. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73706-5_14

    Chapter  Google Scholar 

  8. Boyatzis, R.E.: Transforming Qualitative Information: Thematic Analysis and Code Development. Sage, Thousand Oaks (1998)

    Google Scholar 

  9. Chancellor, S., Kalantidis, Y., Pater, J.A., De Choudhury, M., Shamma, D.A.: Multimodal classification of moderated online pro-eating disorder content. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 3213–3226 (2017)

    Google Scholar 

  10. Chandrasekharan, E., Samory, M., Srinivasan, A., Gilbert, E.: The bag of communities: identifying abusive behavior online with preexisting Internet data. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 3175–3187 (2017)

    Google Scholar 

  11. Chen, Y., Zhou, Y., Zhu, S., Xu, H.: Detecting offensive language in social media to protect adolescent online safety. In: 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Conference on Social Computing, pp. 71–80 (2012). https://doi.org/10.1109/SocialCom-PASSAT.2012.55

  12. Cortina, J.M.: What is coefficient alpha? An examination of theory and applications. J. Appl. Psychol. 78(1), 98 (1993)

    Article  Google Scholar 

  13. Cowan, G., Cowan, G.: Empathy, ways of knowing, and interdependence as mediators of gender differences in attitudes toward hate speech and freedom of speech. Psychol. Women Q. 300–308 (2003)

    Google Scholar 

  14. Cowan, G., Hodge, C.: Judgments of hate speech: the effects of target group, publicness, and behavioral responses of the target. J. Appl. Soc. Psychol. 26(4), 355–374 (1996)

    Article  Google Scholar 

  15. Cowan, G., Resendez, M., Marshall, E., Quist, R.: Hate speech and constitutional protection: priming values of equality and freedom. J. Soc. Issues 58(2), 247–263 (2002)

    Article  Google Scholar 

  16. Davidson, T., Bhattacharya, D., Weber, I.: Racial bias in hate speech and abusive language detection datasets. arXiv:1905.12516 [cs] 2019. http://arxiv.org/abs/1905.12516. Accessed 10 May 2020

  17. Delgado, R.: Words that wound: a tort action for racial insults, epithets, and name-calling. Harv. CR-CLL Rev. 17, 133 (1982)

    Google Scholar 

  18. Farrell, T., Fernandez, M., Novotny, J., Alani, H.: Exploring Misogyny across the Manosphere in Reddit. In: Proceedings of the 10th ACM Conference on Web Science - WebSci 2019, pp. 87–96 (2019). https://doi.org/10.1145/3292522.3326045

  19. Founta, A.-M., et al.: Large scale crowdsourcing and characterization of twitter abusive behavior. arXiv preprint arXiv:1802.00393 (2018)

  20. Galesic, M., Bosnjak, M.: Effects of questionnaire length on participation and indicators of response quality in a web survey. Publ. Opin. Q. 73(2), 349–360 (2009)

    Article  Google Scholar 

  21. Grimmelmann, J.: The virtues of moderation. Yale JL & Tech. 17, 42 (2015)

    Google Scholar 

  22. Hewitt, S., Tiropanis, T., Bokhove, C.: The problem of identifying misogynist language on Twitter (and other online social spaces). In: Proceedings of the 8th ACM Conference on Web Science - WebSci 2016, pp. 333–335 (2016). https://doi.org/10.1145/2908131.2908183

  23. Hosseini, H., Kannan, S., Zhang, B., Poovendran, R.: Deceiving Google’s perspective API built for detecting toxic comments. arXiv:1702.08138 [cs] (2017). http://arxiv.org/abs/1702.08138. Accessed 9 July 2020

  24. Kennedy, B., et al.: The Gab Hate Corpus: A collection of 27k posts annotated for hate speech (2020)

    Google Scholar 

  25. Kocoń, J., Figas, A., Gruza, M., Puchalska, D., Kajdanowicz, T., Kazienko, P.: Offensive, aggressive, and hate speech analysis: from data-centric to human-centered approach. Inf. Process. Manag. 58(5), 102643 (2021). https://doi.org/10.1016/j.ipm.2021.102643

    Article  Google Scholar 

  26. Kumar, R., Reganti, A.N., Bhatia, A., Maheshwari, T.: Aggression-annotated corpus of Hindi-English code-mixed data. arXiv preprint arXiv:1803.09402 (2018)

  27. Leets, L.: Responses to internet hate sites: is speech too free in cyberspace? Commun. Law Policy 6(2), 287–317 (2001)

    Article  Google Scholar 

  28. Lucas, E., Alm, C.O., Bailey, R.: Understanding human and predictive moderation of online science discourse. In: 2019 IEEE Western New York Image and Signal Processing Workshop (WNYISPW), pp. 1–5 (2019)

    Google Scholar 

  29. Marwick, A.E., Miller, R.: Online harassment, defamation, and hateful speech: a primer of the legal landscape. Fordham Center on Law and Information Policy Report, p. 2 (2014)

    Google Scholar 

  30. Matsuda, M.J.: Public response to racist speech: considering the victim’s story. Mich. Law Rev. 87(8), 2320–2381 (1989)

    Article  Google Scholar 

  31. Matsuda, M.J., Lawrence, C.R., Delgado, R., Crenshaw, K.W.: Words that Wound. Westview, Boulder (1993)

    Google Scholar 

  32. McClelland, K., Hunter, C.: The perceived seriousness of racial harassment. Soc. Probl. 39(1), 92–107 (1992)

    Article  Google Scholar 

  33. McGillicuddy, A.R., Bernard, J.-G., Cranefield, J.A.: Controlling bad behavior in online communities: an examination of moderation work (2016)

    Google Scholar 

  34. Mohan, S., Guha, A., Harris, M., Popowich, F., Schuster, A., Priebe, C.: The impact of toxic language on the health of reddit communities. In: Canadian Conference on Artificial Intelligence, pp. 51–56 (2017)

    Google Scholar 

  35. Moran, M.: Talking about hate speech: a rhetorical analysis of American and Canadian approaches to the regulation of hate speech. Wis. L. Rev. 1425 (1994)

    Google Scholar 

  36. Muller, M., et al.: How data science workers work with data: discovery, capture, curation, design, creation. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2019)

    Google Scholar 

  37. Netemeyer, R.G., Bearden, W.O., Sharma, S.: Scaling Procedures: Issues and Applications. Sage Publications, Thousand Oaks (2003)

    Google Scholar 

  38. Nobata, C., Tetreault, J., Thomas, A., Mehdad, Y., Chang, Y.: Abusive language detection in online user content. In: Proceedings of the 25th International Conference on World Wide Web, pp. 145–153 (2016)

    Google Scholar 

  39. Oostdijk, N., van Halteren, H.: N-gram-based recognition of threatening tweets. In: International Conference on Intelligent Text Processing and Computational Linguistics, pp. 183–196 (2013)

    Google Scholar 

  40. Parekh, B.: Hate speech. Publ. Policy Res. 12(4), 213–223 (2006). https://doi.org/10.1111/j.1070-3535.2005.00405.x

    Article  Google Scholar 

  41. Pohjonen, M.: Extreme Speech Online: An Anthropological Critique of Hate Speech Debates, p. 19 (2017)

    Google Scholar 

  42. James Potter, W., Levine-Donnerstein, D.: Rethinking validity and reliability in content analysis. J. Appl. Commun. Res. 27(3), 258–284 (1999). https://doi.org/10.1080/00909889909365539

    Article  Google Scholar 

  43. Power, R.A., Pluess, M.: Heritability estimates of the Big Five personality traits based on common genetic variants. Transl. Psychiatry 5(7), e604–e604 (2015)

    Article  Google Scholar 

  44. Rammstedt, B., John, O.P.: Measuring personality in one minute or less: a 10-item short version of the Big Five Inventory in English and German. J. Res. Pers. 41(1), 203–212 (2007)

    Article  Google Scholar 

  45. Ross, B., Rist, M., Carbonell, G., Cabrera, B., Kurowsky, N., Wojatzki, M.: Measuring the reliability of hate speech annotations: the case of the European refugee crisis. arXiv preprint arXiv:1701.08118 (2017)

  46. Rosseel, Y.: Lavaan: an R package for structural equation modeling and more. Version 0.5–12 (BETA). J. Stat. Softw. 48(2), 1–36 (2012)

    Google Scholar 

  47. Roussos, G., Dovidio, J.F.: Hate speech is in the eye of the beholder: the influence of racial attitudes and freedom of speech beliefs on perceptions of racially motivated threats of violence. Soc. Psychol. Person. Sci. 9(2), 176–185 (2018). https://doi.org/10.1177/1948550617748728

    Article  Google Scholar 

  48. Sanguinetti, M., Poletto, F., Bosco, C., Patti, V., Stranisci, M.: An Italian twitter corpus of hate speech against immigrants. In: Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018) (2018)

    Google Scholar 

  49. Schmidt, A., Wiegand, M.: A survey on hate speech detection using natural language processing. In: Proceedings of the Fifth International Workshop on Natural Language Processing for Social Media, pp. 1–10 (2017). https://doi.org/10.18653/v1/W17-1101

  50. Sellars, A.: Defining hate speech. SSRN Electron. J. (2016). https://doi.org/10.2139/ssrn.2882244

    Article  Google Scholar 

  51. Singh, M., Bansal, D., Sofat, S.: Behavioral analysis and classification of spammers distributing pornographic content in social media. Soc. Netw. Anal. Min. 6(1), 1–18 (2016). https://doi.org/10.1007/s13278-016-0350-0

    Article  Google Scholar 

  52. Van Hee, C., et al.: Detection and fine-grained classification of cyberbullying events. In: International Conference Recent Advances in Natural Language Processing (RANLP), pp. 672–680 (2015)

    Google Scholar 

  53. Wang, D., Mark, G.: Internet censorship in China: examining user awareness and attitudes. ACM Trans. Comput.-Hum. Interact. (TOCHI) 22(6), 1–22 (2015)

    Article  Google Scholar 

  54. Waseem, Z., Davidson, T., Warmsley, D., Weber, I.: Understanding abuse: a typology of abusive language detection subtasks. arXiv:1705.09899 [cs] (2017). http://arxiv.org/abs/1705.09899. Accessed 6 Mar 2020

  55. Waseem, Z., Hovy, D.: Hateful symbols or hateful people? Predictive features for hate speech detection on twitter. In: Proceedings of the NAACL Student Research Workshop, pp. 88–93 (2016)

    Google Scholar 

  56. White II, M.H., Crandall, C.S.: Freedom of racist speech: ego and expressive threats. J. Pers. Soc. Psychol. 113(3), 413 (2017)

    Article  Google Scholar 

  57. Wojatzki, M., Horsmann, T., Gold, D., Zesch, T.: Do women perceive hate differently: examining the relationship between hate speech, gender, and agreement judgments, p. 11 (2018)

    Google Scholar 

  58. Xiang, G., Fan, B., Wang, L., Hong, J., Rose, C.: Detecting offensive tweets via topical feature discovery over a large scale twitter corpus. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, pp. 1980–1984 (2012)

    Google Scholar 

  59. Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra, N., Kumar, R.: Predicting the type and target of offensive posts in social media. arXiv preprint arXiv:1902.09666 (2019)

  60. Community Standards. https://www.facebook.com/communitystandards/hate_speech. Accessed 25 Mar 2020

  61. Hateful Conduct Policy. https://help.twitter.com/en/rules-and-policies/hateful-conduct-policy. Accessed 25 Mar 2020

  62. Home. Optimal Workshop. https://www.optimalworkshop.com/. Accessed 14 May 2020

  63. Prolific—Online participant recruitment for surveys and market research. https://www.prolific.co/. Accessed 17 May 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yisi Sang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sang, Y., Stanton, J. (2022). The Origin and Value of Disagreement Among Data Labelers: A Case Study of Individual Differences in Hate Speech Annotation. In: Smits, M. (eds) Information for a Better World: Shaping the Global Future. iConference 2022. Lecture Notes in Computer Science(), vol 13192. Springer, Cham. https://doi.org/10.1007/978-3-030-96957-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96957-8_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96956-1

  • Online ISBN: 978-3-030-96957-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics