Skip to main content

Development of a Modular Multilevel Cascade Converter Based on Full-Bridge Submodules with a Common DC Bus

  • Conference paper
  • First Online:
Sustainable Energy for Smart Cities (SESC 2021)

Abstract

The Modular Multilevel Cascade Converters (MMCC) present themselves as one of the solutions for high power and high voltage applications. Modularity and low voltage stress in each semiconductor are some of the features of this solution. This paper presents a study with experimental results concerning an MMCC composed by three full-bridge submodules with a common DC-bus and with low frequency cascaded transformers. Sharing the DC bus for each submodule al-lows for a simpler control algorithm as well as a simpler interface point with renewable energy sources or energy storage systems. Along the paper, it is presented the step-by-step methodology to obtain the main parameters of the elements that constitute the MMCC, namely the transformers equivalents model. Thus, it was possible to develop a more realistic simulation model, whose results obtained are very similar to the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barros, L.A.M., Tanta, M., Martins, A.P., Afonso, J.L., Pinto, J.G.: Submodule topologies and PWM techniques applied in modular multilevel converters: review and analysis. In: Afonso, J.L., Monteiro, V., Pinto, J.G. (eds.) SESC 2020. LNICSSITE, vol. 375, pp. 111–131. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-73585-2_8. ISBN 978-3-030-73584-5

  2. Steimel, A.: Electric traction-motive power and energy supply: basics and practical experience. Oldenbourg Industrieverlag (2008). ISBN 978-3-8356-3132-8

    Google Scholar 

  3. Sharifabadi, K., Harnefors, L., Nee, H.-P., Norrga, S., Teodorescu, R.: Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems. Wiley (2016). ISBN 9781118851548

    Google Scholar 

  4. Perez, M.A., Bernet, S., Rodriguez, J., Kouro, S., Lizana, R.: Circuit topologies, modeling, control schemes, and applications of modular multilevel converters. IEEE Trans. Power Electron. 30(1), 4–17 (2014). https://doi.org/10.1109/TPEL.2014.2310127,ISSN:0885-8993

    Article  Google Scholar 

  5. Debnath, S., Qin, J., Bahrani, B., Saeedifard, M., Barbosa, P.: Operation, control, and applications of the modular multilevel converter: a review. IEEE Trans. Power Electron. 30(1), 37–53 (2014). https://doi.org/10.1109/TPEL.2014.2309937,ISSN:0885-8993

    Article  Google Scholar 

  6. Liao, J., Corzine, K., Ferdowsi, M.: A new control method for single-DC-source cascaded H-bridge multilevel converters using phase-shift modulation. In: 2008 Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition, pp. 886–890 (2008). https://doi.org/10.1109/APEC.2008.4522825. ISBN 978-1-4244-1873-2

  7. Brenna, M., Foiadelli, F., Zaninelli, D.: Electrical Railway Transportation Systems. Wiley (2018). ISBN 978-1-119-38680-3

    Google Scholar 

  8. Zhao, C., Li, Y., Li, Z., Wang, P., Ma, X., Luo, Y.: Optimized design of full-bridge modular multilevel converter with low energy storage requirements for HVDC transmission system. IEEE Trans. Power Electron. 33(1), 97–109 (2017). https://doi.org/10.1109/TPEL.2017.2660532. ISSN:1941-0107

    Article  Google Scholar 

  9. Yellasiri, S., Panda, A.: Performance of cascade multilevel H-Bridge inverter with single DC source by employing low frequency three-phase transformers, pp. 1981–1986 (2010). https://doi.org/10.1109/IECON.2010.5675291

  10. Barros, L.A., Tanta, M., Martins, A.P., Afonso, J.L., Pinto, J.: Opportunities and challenges of power electronics systems in future railway electrification. In: 2020 IEEE 14th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), vol. 1, pp. 530–537 (2020). https://doi.org/10.1109/CPE-POWERENG48600.2020.9161695. ISSN 2166-9545

  11. Xu, Q., et al.: Analysis and comparison of modular railway power conditioner for high-speed railway traction system. IEEE Trans. Power Electron. 32(8), 6031–6048 (2016). https://doi.org/10.1109/TPEL.2016.2616721. ISSN 0885-8993

    Article  Google Scholar 

  12. Dekka, A., Wu, B., Fuentes, R.L., Perez, M., Zargari, N.R.: Evolution of topologies, modeling, control schemes, and applications of modular multilevel converters. IEEE J. Emerg. Sel. Top. Power Electron. 5(4), 1631–1656 (2017). https://doi.org/10.1109/JESTPE.2017.2742938. ISSN 2168-6785

    Article  Google Scholar 

  13. Wang, Y., Aksoz, A., Geury, T., Ozturk, S.B., Kivanc, O.C., Hegazy, O.: A review of modular multilevel converters for stationary applications. Appl. Sci. 10(21), 7719 (2020). https://doi.org/10.3390/app10217719

    Article  Google Scholar 

  14. Feng, J., Chu, W., Zhang, Z., Zhu, Z.: Power electronic transformer-based railway traction systems: challenges and opportunities. IEEE J. Emerg. Sel. Top. Power Electron. 5(3), 1237–1253 (2017). https://doi.org/10.1109/JESTPE.2017.2685464. ISSN 2168-6777

    Article  Google Scholar 

  15. Tanta, M., Barros, L.A., Pinto, J., Martins, A.P., Afonso, J.L.: Modular multilevel converter in electrified railway systems: applications of rail static frequency converters and rail power conditioners. In: 2020 International Young Engineers Forum (YEF-ECE), pp. 55–60 (2020). https://doi.org/10.1109/YEF-ECE49388.2020.9171814. ISBN 978-1-7281-5679-8

  16. Latran, M.B., Teke, A.: Investigation of multilevel multifunctional grid connected inverter topologies and control strategies used in photovoltaic systems. Renew. Sustain. Energy Rev. 42, 361–376 (2015). https://doi.org/10.1016/j.rser.2014.10.030

    Article  Google Scholar 

  17. Cao, W., Xu, Y., Han, Y., Ren, B.: Comparison of cascaded multilevel and modular multilevel converters with energy storage system. In: 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), pp. 290–294 (2016). https://doi.org/10.1109/ICIEA.2016.7603596. ISBN 978-1-4673-8645-6

  18. Antonio-Ferreira, A., Collados-Rodriguez, C., Gomis-Bellmunt, O.: Modulation techniques applied to medium voltage modular multilevel converters for renewable energy integration: a review. Electr. Power Syst. Res. 155, 21–39 (2018). https://doi.org/10.1016/j.epsr.2017.08.015

    Article  Google Scholar 

  19. Lu, S., Yuan, L., Li, K., Zhao, Z.: An improved phase-shifted carrier modulation scheme for a hybrid modular multilevel converter. IEEE Trans. Power Electron. 32(1), 81–97 (2016). https://doi.org/10.1109/TPEL.2016.2532386. ISSN 1941-0107

    Article  Google Scholar 

  20. Marquez, A., Leon, J.I., Vazquez, S., Franquelo, L.G., Perez, M.: A comprehensive comparison of modulation methods for MMC converters. In: IECON 2017–43rd Annual Conference of the IEEE Industrial Electronics Society, pp. 4459–4464 (2017). https://doi.org/10.1109/IECON.2017.8216768. ISBN 978-1-5386-1127-2

  21. Song, S.G., Kang, F.S., Park, S.-J.: Cascaded multilevel inverter employing three-phase transformers and single DC input. IEEE Trans. Industr. Electron. 56(6), 2005–2014 (2009). https://doi.org/10.1109/TIE.2009.2013846. ISSN 1557-9948

    Article  Google Scholar 

  22. Kang, F.-S., Park, S.-J., Lee, M.H., Kim, C.-U.: An efficient multilevel-synthesis approach and its application to a 27-level inverter. IEEE Trans. Industr. Electron. 52(6), 1600–1606 (2005). https://doi.org/10.1109/TIE.2005.858715. ISSN 1557-9948

    Article  Google Scholar 

  23. Ortúzar, M.E., Carmi, R.E., Dixon, J.W., Morán, L.: Voltage-source active power filter based on multilevel converter and ultracapacitor DC link. IEEE Trans. Industr. Electron. 53(2), 477–485 (2006). https://doi.org/10.1109/TIE.2006.870656. ISSN 1557-9948

    Article  Google Scholar 

  24. Flores, P., Dixon, J., Ortúzar, M., Carmi, R., Barriuso, P., Morán, L.: Static var compensator and active power filter with power injection capability, using 27-level inverters and photovoltaic cells. IEEE Trans. Industr. Electron. 56(1), 130–138 (2008). https://doi.org/10.1109/ISIE.2006.295791,ISBN:1-4244-0497-5

    Article  Google Scholar 

  25. Zhou, L., Fu, Q., Li, X., Liu, C.: A novel Multilevel Power Quality Compensator for electrified railway, pp. 1141–1147 (2009). https://doi.org/10.1109/IPEMC.2009.5157555

  26. ElGebaly, A.E., Hassan, A.E.-W., El-Nemr, M.K.: Reactive power compensation by multilevel inverter STATCOM for railways power grid. In: 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pp. 2094–2099 (2019). https://doi.org/10.1109/EIConRus.2019.8657058. ISBN 978-1-7281-0339-6

  27. Zhou, L., Fu, Q., Li, X., Liu, C.: A novel photovoltaic grid-connected power conditioner employing hybrid multilevel inverter. In: 2009 International Conference on Sustainable Power Generation and Supply, pp. 1–7 (2009). https://doi.org/10.1109/SUPERGEN.2009.5348154. ISSN 2156-9681

  28. Park, S.-J., Kang, F.-S., Cho, S.E., Moon, C.-J., Nam, H.-K.: A novel switching strategy for improving modularity and manufacturability of cascaded-transformer-based multilevel inverters. Electric Power Syst. Res. 74(3), 409–416 (2005). https://doi.org/10.1016/j.epsr.2005.01.005. ISSN 0378-7796. https://www.sciencedirect.com/science/article/pii/S0378779605000751

  29. Jahan, H., Naseri, M., Haji Esmaeili, M., Abapour, M., Zare, K.: Low component merged cells cascaded-transformer multilevel inverter featuring an enhanced reliability. IET Power Electronics 10 (2017). https://doi.org/10.1049/iet-pel.2016.0787

  30. Diaz Rodriguez, J., Pabon, L., Peñaranda, E.: Novel methodology for the calculation of transformers in power multilevel converters 17, 121–132 (2015)

    Google Scholar 

  31. Miura, Y., Mizutani, T., Ito, M., Ise, T.: A novel space vector control with capacitor voltage balancing for a multilevel modular matrix converter. In: 2013 IEEE ECCE Asia Downunder, pp. 442–448 (2013). https://doi.org/10.1109/ECCE-Asia.2013.6579134. ISBN 978-1-4799-0482-2

  32. Nami, A., Liang, J., Dijkhuizen, F., Demetriades, G.D.: Modular multilevel converters for HVDC applications: review on converter cells and functionalities. IEEE Trans. Power Electron. 30(1), 18–36 (2014). https://doi.org/10.1109/TPEL.2014.2327641. ISSN 0885-8993

    Article  Google Scholar 

  33. Karimi-Ghartemani, M., Iravani, M.R.: A method for synchronization of power electronic converters in polluted and variable-frequency environments. IEEE Trans. Power Syst. 19(3), 1263–1270 (2004). https://doi.org/10.1109/TPWRS.2004.831280,ISSN:1558-0679

    Article  Google Scholar 

  34. Barros, L.A., Tanta, M., Sousa, T.J., Afonso, J.L., Pinto, J.: New multifunctional isolated microinverter with integrated energy storage system for PV applications. Energies 13(15), 4016 (2020). https://doi.org/10.3390/en13154016,ISSN:1996-1073

    Article  Google Scholar 

  35. Pinto, J., Monteiro, V., Gonçalves, H., Afonso, J.L.: Onboard reconfigurable battery charger for electric vehicles with traction-to-auxiliary mode. IEEE Trans. Veh. Technol. 63(3), 1104–1116 (2013). https://doi.org/10.1109/TVT.2013.2283531,ISSN:1939-9359

    Article  Google Scholar 

  36. Rogers, J.W., Plett, C.: Radio Frequency Integrated Circuit Design. Artech House (2010). ISBN 978-1580535021

    Google Scholar 

  37. Barros, L.A., Tanta, M., Martins, A.P., Afonso, J.L., Pinto, J.: STATCOM evaluation in electrified railway using V/V and Scott power transformers. In: International Conference on Sustainable Energy for Smart Cities, pp. 18–32 (2019). https://doi.org/10.1007/978-3-030-45694-8_2. ISBN 978-3-030-45693-1

Download references

Acknowledgements

This work has been supported by FCT – Fundação para a Ciência e Tecnologia with-in the Project Scope: UIDB/00319/2020. This work has been supported by the FCT Project QUALITY4POWER PTDC/EEI-EEE/28813/2017, and by the FCT Project DAIPESEV PTDC/EEI-EEE/30382/2017. Mr. Luis A. M. Barros is supported by the doctoral scholarship PD/BD/143006/2018 granted by the Portuguese FCT foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Rego .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rego, J., Pereira, F.L., Barros, L.A.M., Martins, A.P., Pinto, J.G. (2022). Development of a Modular Multilevel Cascade Converter Based on Full-Bridge Submodules with a Common DC Bus. In: Afonso, J.L., Monteiro, V., Pinto, J.G. (eds) Sustainable Energy for Smart Cities. SESC 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 425. Springer, Cham. https://doi.org/10.1007/978-3-030-97027-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97027-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97026-0

  • Online ISBN: 978-3-030-97027-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics